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Abstract

We fully characterize the possible outcomes of exploration and stopping: all state-

time joint distributions achieved by stopping some martingale process with bounded

variation. Utilizing this characterization, we provide a general methodology for solv-

ing an optimal exploration-stopping problem where the stopping payoff depends on

state and time arbitrarily. We reveal the close relation between the pattern of explo-

ration and time preference and apply it to study competitive exploration contests.

1 Introduction

Many economic problems involve exploration as well as a stopping decision. The pay-
off of the decision-maker can depend on the time of the decision, as well as the state of
knowledge at that time. The extensive literature on real options emphasizes the impor-
tance of the stopping problem. For example, the classic book of Dixit and Pindick (1994)
focuses on the timing of investment decisions under the assumption of exogenous infor-
mation arrival. Yet, many applications involve active exploration, which often includes
the choice of the type of information to acquire.

Dynamic exploration problems are complicated because the decision of what type
of information to acquire can depend on the information already obtained. This paper
sets off with a result which significantly simplifies these problems. Specifically, for a
class of natural constraints on the rate of learning, we present a simple condition that
fully characterizes the attainable joint distributions over stopping times and the state of
knowledge at the stopping time, termed in shorthand the state-time distribution. Thus,
when payoffs depend on the stopping time as well as the information available at that
time, instead of solving the dynamic problem, we can simply pick the optimal state-time
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distribution. Our result guarantees the existence of a dynamic exploration strategy that
attains the desired distribution, as well as that no other strategy can attain a distribution
outside the consideration set.

To appreciate the power of the result, consider two competitive firms that test candi-
date technologies in order to launch a new product. They could perform various exper-
iments that glean different types of information. Some experiments may focus on relia-
bility, yielding information in the form of observed potential failures. Some experiments
may yield better estimates of the efficiency of the technology in the form of performance
data in various circumstances. The information collected affects the success of the prod-
uct, and so does the timing. Specifically, because the distribution of times that the com-
petitor launches the product matters, the problem may be more complicated than one of
exponential discounting. Each firm wants to know the attainable information given any
distribution of the competitors’ decision times, and our result provides exactly that.

Outline of contribution. In our general framework of exploration and stopping, we
model the exploration strategy of a decision-maker (DM) as choosing a martingale pro-
cess. Exploration is flexible in that any martingale process is feasible as long as it satisfies
a bound on its flow variation.

Our first main result gives a complete characterization of the state-time distributions
that are embeddable, i.e., they are the joint distributions of the stopping state and stop-
ping time corresponding to some feasible martingale process and stopping time. We
show that a state-time distribution is embeddable if and only if, in each period, a simple
inequality condition holds: the expected variation of the stopped state plus the variation
of the expected stopped state in the future is less than the cumulative variation bound up
to the period (Theorem 1). The condition has a natural interpretation that in any pe-
riod, the amount of knowledge that has been exploited plus the amount of knowledge
that has been explored but not yet exploited must be less than the cumulative capacity of
exploration.

Then, we consider a general exploration-stopping problem, where the DM controls
the exploration strategy and stopping time to maximize the expected stopping payoff.
The DM’s stopping payoff depends arbitrarily on the state of the martingale and time.
The embedding theory reduces the general exploration-stopping problem to a semi-static
problem where the DM directly chooses the optimal embeddable state-time distribution—
a simple linear program.

Our second main result provides a unified methodology for analytically solving the
reduced problem. We establish a strong duality of the linear program and derive a nec-
essary and sufficient first-order characterization of the optimal policy (Theorem 2). The
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constrained optimization problem is equivalent to an unconstrained dual problem where
there exists a “price” (multiplier) for every period at which the DM can “buy” or “sell”
information. The first-order condition states that the optimal state-time distribution
concavifies (attains the upper tangent hyperplane of) a combination of the payoff func-
tion and the shadow cost/benefit of information. Then, solving the optimal exploration-
stopping problem boils down to solving a single-dimensional ordinary differential equa-
tion characterizing the “prices”. In various applications, we illustrate the tremendous
analytical tractability of the methodology.

Third, we derive several general implications of the optimal exploration-stopping
problem. We show that a strategy with coarse support can always solve it: the support
of the stopped state at each time contains a bounded number of points. When the pay-
off function is convex in time, we show that the optimal exploration process resembles a
Poisson process that either drifts along a deterministic path or jumps into the stopping
region. Conversely, when the payoff function is concave in time, the optimal exploration
process necessarily involves “pure exploration” at the beginning, i.e., exploration without
any immediate stopping.

Economic applications. We apply our methodology to develop tractable models for
economic applications. Our first application revisits the canonical real options problem
but with active and flexible exploration. We use the application as a minimal working
example to explain the critical machinery of our model, establishing a connection with
the recursive approach that has been almost exclusively used in the literature.

Our second application is a canonical information acquisition problem: a DM chooses
a signal process with bounded informativeness to learn a binary payoff-relevant state and
solves a decision-making problem upon stopping. We characterize the optimal infor-
mation acquisition strategy for general discount functions. The first result reveals the
connection between the risk preference toward time lotteries and the pattern of optimal
exploration. Specifically, we show that the optimal exploration policy alternates between
two types of strategies:

• Pure exploration: during a period of pure exploration, the DM’s interim belief be-
comes more dispersed but never sufficient to induce stopping and making the de-
cision. A pure exploration period always ends in a region where the (adjusted)
discount function is concave (indicating time-risk aversion).

• Full exploitation: during a period of full exploitation, the DM’s belief jumps accord-
ing to a Poisson process, and the DM stops immediately upon the jump of the belief.
The continuing belief remains degenerate and constant. An exploitation period typ-
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ically ends in a region where the (adjusted) discount function is convex (indicating
time-risk loving).

The second result reveals the connection between the discount rate’s evolution and
the decision’s quality. We consider a setting where full exploitation is optimal and quan-
tify the decision quality measured by the distance between the decision belief and the
prior. We show that convexly decreasing decision quality over time implies an increas-
ing discount rate. Vice versa, convexly increasing decision quality over time implies a
decreasing discount rate. The decision quality is constant if and only if the discount
function resembles standard exponential discounting.

Our third application models the competitive R&D example we introduced earlier.
We model a continuous-time contest in which n contestants independently and privately
choose their exploration strategies, i.e., each of them chooses a martingale process and
a stopping time. The distance between the stopped state and the initial state represents
the quality of the research. They compete in the time dimension but also value the qual-
ity dimension: the contestant who stops the first collects a reward that depends on the
quality of his research. The remaining contestant gets nothing. We provide a complete
characterization of all pure strategy equilibria of the contest, showing that all equilibria
are symmetric and exhibit endogenous time-risk loving induced by competition: in any
pure strategy equilibrium of the game, all contestants use the same Poisson exploration
process, leading to an effective discount factor that is convex in time.

Related literature

The optional stopping problem in our paper resembles the canonical sequential sam-
pling problem (see, e.g., Arrow, Blackwell, and Girshick 1949; Wald 1947) and real op-
tions problem (see, e.g., Dixit and Pindyck 1994). We merged the stopping problem with
flexible active exploration, providing by far the most general solution to optimal explo-
ration and stopping problems. Our framework fully nests Zhong 2022, D. Chen and
Zhong 2024, and the majority of Hébert and Woodford 2023, each of which focuses on
a specific time preference and payoff structure and makes sharply different predictions.1

The generality of our method allows us to obtain a complete characterization of how time
preference determines the optimal pattern of exploration, unifying and generalizing the
existing results. A closely related but not nested paper is Georgiadis-Harris 2024, where
the stopping time is exogenous and the pure exploration policy is optimal.

1 Zhong 2022 studies the case with exponential discounting. Hébert and Woodford 2023 studies both
exponential discounting and fixed waiting cost. D. Chen and Zhong 2024 studies a one-dimensional setting
with a fixed stopping threshold and general convex / concave time preference.
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Our key technical innovation is a novel embedding theory: the characterization of all
state-time distributions that can be implemented by stopping some martingale process
with bounded variation. It could be viewed as extending the celebrated Skorokhod’s em-
bedding (Skorokhod 1982) to general martingale processes and the state-time product
space. An extensive literature on stochastic analysis attempted to generalize Skorokhod’s
embedding to general stochastic processes (see, e.g., Obłój 2004 for a survey). Our ap-
proach differs from all these papers by embedding not only the distribution of states but
the state-time joint distribution.

We show that strictly convex discount functions always lead to a Poisson exploration
strategy where the state drifts deterministically or jumps to the stopping region, justify-
ing the Poisson learning models adopted by papers on sequential sampling (see, e.g., Che
and Mierendorff 2019, Mayskaya 2022 and Nikandrova and Pancs 2018). Strictly concave
discount functions, on the other hand, always lead to pure exploration without stopping.
The “pure accumulation” policy with deterministic stopping in D. Chen and Zhong 2024
is a special case of ours with binary state, threshold stopping rule and additively sepa-
rable time preference. Pure exploration is a common model for studying the timing of
innovation (see, e.g., Dasgupta and Stiglitz 1980, Lee and Wilde 1980 and Reinganum
1989). The result connects optimal exploration to the recent literature on the risk prefer-
ence towards time lotteries (See, e.g., Chesson and Viscusi 2003, M. K. Chen 2013, Onay
and Öncüler 2007 and DeJarnette et al. 2020).

Our second application studies the speed-accuracy tradeoff in dynamic exploration,
which has been previously studied almost extensively using the drift-diffusion models
(DDM) of binary choice problems (see, e.g., Fudenberg, Newey, et al. 2020; Fudenberg,
Strack, and Strzalecki 2018; Ratcliff and Rouder 1998). Our exploration-stopping model
provides a novel optimization foundation for the speed-accuracy complementarity and
substitutability based on whether the DM’s discount rate is increasing or decreasing over
time.

Our third application is closely related to the literature on dynamic contests. Seel and
Strack 2013, 2016 introduced the dynamic contest framework where contestants compete
in the states of stopped Brownian motions. Several papers have extended this framework
to allow for more general processes, prize structure, and preferences (see Feng and Hob-
son 2015, 2016a,b; Nutz and Zhang 2022). In another strand of literature, Anderson, L.
Smith, and Park 2017; Park and L. Smith 2008 study the timing game where contestants
compete in the stopping time. Our exploration contest merges the two approaches and
provides a framework where the contest’s prize depends on both the stopping state and
the stopping time.

The rest of the paper is organized as follows. Section 2 addresses the question of
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attainable state-time distributions. Section 3 demonstrates the power of this result by
solving the optimal exploration-stopping problem. Section 4 presents several applica-
tions.

2 Exploration & stoppinig : the embedding theory

In this section, we study the feasible outcomes in a problem of dynamic exploration.
Closed subset T of R+ captures our timeline, which can be continuous or discrete. We
assume that 0 ∈ T and that T contains at least two elements.

The state µt, t ∈ T , is a martingale with domain in a convex compact set S ⊂ R
n. For

example, the state could be interpreted as the belief of the DM about a binary “state of the
world”, in which case S is the interval [0,1] Starting from point µ0 ⊂ S, the DM chooses
the exploration strategy that determines the evolution of µt.

There is a rich set of exploration strategies, which lead to different laws of motion
of the state µt. Any strategy is admissible as long as it satisfies the following restriction.
Specifically, assume that there exists a strongly convex and continuous function H : S →
R and constant χ > 0, such that cadlag martingale ⟨µt⟩t∈T in S is admissible if and only if
satisfies the variation constraint

E

[
H(µt′ )−H(µt)

∣∣∣Ft] ≤ χ(t′ − t) (1)

for all t′, t ∈ T , t′ > t. Condition (1) is a common constraint in information economics
(See Zhong 2022, Hébert and Woodford 2023 and Georgiadis-Harris 2024). It captures
the idea that there are many choices of how to explore - e.g., via Poisson or Brownian
signals or a combination thereof - but there is a constraint on how quickly one can learn.
Function H provides an appropriate measure of information received and χ, the rate of
information arrival. The assumption nests familiar constraints like quadratic variation
bound (when H is quadratic) and mutual information rate bound (when H is Shannon’s
entropy). We extend our analysis to allow for endogenous capacity constraint in Sec-
tion 3.2.

Formally, denote by (Ω,F ,P ) the underlying probability space.2 The decision of when
to stop exploration is captured by the stopping time τ w.r.t. the filtration ⟨Ft⟩t∈T . Let
M denote the collection of all admissible pairs of (⟨µt⟩, τ). We are interested in joint
probability measures over pairs (µτ , τ) attainable by some admissible state processes µt
with some stopping time τ., i.e. the set

F =
{
f ∈ ∆(S × T )

∣∣∣∣ ∃(⟨µt⟩, τ) ∈M s.t. f ∼ (µτ , τ)
}
.

2 Because exploration involves the choice of the type of information to receive, exploration strategy
defines the probability space together with the process µt on it.
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F is called the set of embeddable state-time distributions. We are now ready to present
our first result: the characterization of embeddable distributions. In order to provide a
clean expression for the necessary and sufficient condition, we normalize S to be a subset
of the probability simplex of Rn+1 and extend H homogeneously (of degree 1) from S to
the convex cone

{
α ·µ |α ∈R+,µ ∈ S

}
.3

Theorem 1 (Martingal Embeddings). f ∈ F ⇐⇒ Ef [µ] = µ0 and ∀t ∈ T , f satisfies:∫
τ≤t

H(µ)f (dµ,dτ) +H

(∫
τ>t

µf (dµ,dτ)
)
−H(µ0) ≤ χ ·

∫
min {t,τ}f (dµ,dτ) (2)

Proof. See Appendix A. Q.E.D.

Let us interpret condition (2). The DM explores and then stops. The left-hand side
captures the minimal information required to generate the portion of the distribution f

over time interval [0, t]. The right-hand side captures the total information received over
[0, t], until stopping.

To see this in greater detail, define

µ̂t ≡

 µτ if τ ≤ t,

E[µt | τ > t] if τ > t.

Then, process µ̂t contains weakly less information than process µt, because it does not
refine the knowledge that µt contains in the event that τ > t. Information contained in
µ̂t cannot exceed total information obtained until time t, hence we have the following
necessary condition

E[H(µ̂t)]−H(µ0) ≤ χE[min(t,τ)].

This inequality is equivalent to (2).
Theorem 1 states that condition (2) is not only necessary but sufficient, i.e., there exists

a pair (µt, τ) that gives rise to distribution f . If equality in (2) held at all times, then µ̂t
would not only achieve distribution f , but also satisfy condition (1). If not, the proof
of Theorem 1 constructs process µt that embeds maximal obtainable information at each
time point t in such a way that we can target the desired joint distribution f at all times
after t.

While the formal proof of sufficiency is relegated to the appendix, here we provide a
sketch of the proof and a graphical illustration when the desired distribution f (which
satisfies Equation (2)) is supported on finitely many points. Figure 1a depicts the support
of one such distribution with 4 discrete periods. (⟨µt⟩, τ) is constructed backward in time.

3 The first assumption is a normalization through shifting and scaling the space. The second assumption
on H outside of S is immaterial. The two normalization assumptions are innocuous and help simplify the
notations.
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• Step 1. Take the mass that stops in the last period f (·,4) (the red dots in Figure 1b). First,
let’s find a continuous-time martingale that, when stopped at t = 4, has the same distri-
bution as f (·,4) and, importantly, keeps the inequality constraint (1) binding. One such
martingale can be constructed using the two paths (the dashed curves) along which
H(µt) increases at constant rate χ. Then, ⟨µt⟩ is the compensated Poisson process that
either drifts along the current path or jumps to the other path (illustrated by the dotted
arrows). Construct the process backward in time until t = 5. The two blue dots repre-
sent the distribution of µt at t = 5. Note that by construction, Equation (1) is satisfied
with equality for t ∈ [3,4].

• Step 2. In Figure 1b, the two blue dots constitute a mean-preserving contraction of the
two red dots. Now, consider the new joint distribution that replaces the mass repre-
sented by the red dots in period 4 with that represented by the blue dots in period 3.
We claim that the new distribution still satisfies Equation (2). The reason is that when
moving from t = 4 to t = 3, the reduction of accrued capacity (RHS of Equation (2)) is
χ ·f (S,4). Meanwhile, the total variation (LHS of Equation (2)) also reduces by χ ·f (S,4)
since our constructed process uses exactly χ unit of variation per unit of time.

• Step 3. Then, we can recursively treat t = 3 as the last period and construct a martingale
that keeps the inequality constraint (1) binding for t ∈ [2,3] and distributed according
to the red dots when t = 3. See Figure 1c.

• Step 4. We repeat steps 2 & 3 until t = 0, depicted by Figure 1d. During the processes,
there are two possible variants, which have been highlighted in blue and black. The
first variant is period [1,2], during which the constructed blue process becomes degen-
erate before t = 1. In this case, we just keep it constant until t = 1. Evidently, this means
the reduction of total variation (LHS of Equation (2)) is strictly less than χ · f (S, [2,4]).
Therefore, at t = 1, Equation (2) holds with an even larger gap for the new distribution.

The second variant is period [0,1]. Equation (2) at t = 1 implies that the variation of the
distribution is less than χ. Therefore, the process constructed backward must become
degenerate before t = 0, which guarantees that the entire process starts at µ0 as required
byM.

2.1 Extensions of the embedding theory

The main embedding theory relies on several key features of the admissible pro-
cesses: the martingale property, the inequality constraint, and the time-invariant capacity
bound. In various economic applications, one or more of those features may be violated.
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Figure 1: Graphical illustration of Theorem 1

In this section, we show that all these features can be relaxed via immediate corollaries
of Theorem 1.

Equality constraint. If the admissible processes are defined by equality variation con-
straints: E

[dH(µt)
dt

∣∣∣Ft] = χ, then the embeddable state-time distributions are characterized
by Equation (2) with one extra constraint:∫

S×T
H(µ)f (dµ,dτ)−H(µ0) = χ

∫
S×T

τf (dµ,dτ). (3)

The single equation (3) is sufficient to guarantee that all variation constraints are binding
because it is effectively the aggregation of all the interim variation constraints.

Time-dependent variation bound. Let a bounded and strictly positive function χt :
T → R+ be a time-dependent variation bound. We say cadlag martingale ⟨µt⟩ is χ-
admissible if and only if it satisfies

E

[
H(µt′ )−H(µt)

∣∣∣Ft] ≤ ∫ t′

t
χsds (4)

for all t′, t ∈ T and t′ > t. Then, by transformation of the timeline via t→ ϕ(t) =
∫
s≤tχsds,

Equation (4) is equivalent to E[H(µt′ )−H(µt)] ≤ ϕ(t′)−ϕ(t), i.e. ⟨µφ−1⟩ is admissible with
variation bound 1. Applying Theorem 1 to the transformed space immediately implies:
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Corollary 1.1. f ∈ ∆(S × T ) is attainable by χ-admissible process ⟨µt⟩ and stopping time τ if
and only if Ef [µ] = µ0 and ∀t ∈ T ,∫

τ≤t
H(µ)f (dµ,dτ) +H

(∫
τ>t

µf (dµ,dτ)
)
−H(µ0) ≤

∫
s≤t

χs(1−F(t))ds, (5)

where F(t) =
∫
τ≤t f (dµ,dτ).

Martingales with drift. Consider the collection of processes ⟨wt⟩ that can be repre-
sented as some martingale process plus deterministic drift m: wt = µt + mt and satisfy
Equation (1). Suppose H is a quadratic function, i.e., H(w) = w⊤ ·M ·w for some positive
definite matrix M. Then,

E

[
H(wt′ )−H(wt)

∣∣∣Ft] =E
[
w⊤t′ ·M ·wt′ −w⊤t ·M ·wt

∣∣∣Ft]
=E

[
µ⊤t′ ·M ·µt′ −µ

⊤
t ·M ·µt

]
+ 2E[µ⊤t′ −µ

⊤
t

∣∣∣Ft] ·M ·mt

=E
[
H(µt′ )−H(µt)

∣∣∣Ft] .
That is, ⟨wt⟩ satisfies Equation (1) if and only if ⟨µt⟩ also satisfies it. Applying Theorem 1
to the transformed space (w,t)→ (µ = w −mt, t) immediately implies

Corollary 1.2. Suppose H is a quadratic function. f ∈ ∆({S+mt, t}t∈T ) is attainable by admis-
sible process ⟨wt⟩ and stopping time τ if and only if Ef [w −mτ ] = w0 and ∀t ∈ T ,∫

τ≤t
H(w −mτ )f (dw,dτ) +H

(∫
τ>t

(w −mτ )f (dw,dτ)
)
−H(w0) ≤ χ ·

∫
min {t,τ}f (dw,dτ)

(6)

3 The optimal exploration-stopping problem

In this section, we solve a dynamic exploration-stopping problem. When the mar-
tingale ⟨µt⟩ is stopped at state µ in period t, the DM obtains a payoff of U (µ,t), where
U : S × T → R+ is continuous and bounded. Then, given admissible strategy (⟨µt⟩, τ), the
DM’s expected payoff is E [U (µτ , τ)]. The DM solves the following optimization problem:

sup
(⟨µt⟩,τ)∈M

E [U (µτ , τ)] . (C)

The nature of function U (µ,t) depends on the application - we provide several examples
in Section 4. Here, we analyze problem (C) in its abstract form. Given Theorem 1, we can
solve (C) by maximizing over state-time distributions rather than entire processes ⟨µt⟩
and stopping time τ . Thus, problem (C) reduces to

sup
f ∈F

∫
U (µ,τ)f (dµ,dτ), (P)
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where the set of distributions F is constrained by the information bound (2). We note
that the solution of (P) exists under mild conditions:

Lemma 1. Suppose lim
t→∞

sup
µ∈S

U (µ,t) = 0, (P) has a solution.

Proof. See Appendix B.1. Q.E.D.

Since Equation (2) is a concave constraint, (P) is a linear program and can be computed
efficiently. To solve (P) analytically, we identify the shadow cost of information in the
constraint (2). In the following example, we illustrate our model using the canonical real
options problem and identify the shadow cost in a simple one-period setting.

Example 1 (Real options). Real options play an important role in finance and economics
(see Dixit and Pindyck 1994). We consider a DM who decides whether to take a risky
investment. The investment gives a payoff of µ ∈ S net of the investment cost I . There is
a safe outside option paying 0. Future payoffs are discounted with rate ρ. Let S = [0,1]
and µ0 = 0.5. The payoff function U (µ,τ) = e−ρτ max {µ− I,0}.

The martingale ⟨µt⟩ captures the expected value of a potential investment. In the
canonical real options problem, ⟨µt⟩ is exogenously given (typically a Brownian motion).
We consider the real options problem with active exploration, where the evolution of ⟨µt⟩
is determined by the exploration strategy of the DM. For simplicity, H(µ0) is normalized
to 0.

The one-period case: We begin with the one-period problem, i.e., when T = {0,1} and
stopping can only occur at t = 1.4 In this case, (P) reduces to

sup
f ∈∆(S)

Ef [U (µ,1)]

s.t. Ef [H(µ)] ≤ χ and Ef [µ] = µ0.

This special case is equivalent to the static “rational inattention” model of Caplin and
Dean 2013. Here, we restate their analysis to illustrate the derivation of the shadow cost
of information. Suppose at t = 1, the agent could buy or sell information (measured by H)
at the price of Λ(1). Then, if the DM stops at µ, the utility net of the cost of information
is U (µ,1) −Λ(1)H(µ). Since the DM also needs to respect the constraint Ef [µ] = µ0, the
solution is obtained by looking at points

(µ,U (µ,1)−Λ(1)H(µ)),

4 Such restriction is without loss when ρ is sufficiently small and the DM is sufficiently patient. Other-
wise, the DM finds it optimal to stop at t = 0 and the solution is trivial.
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and taking a convex hull. Hence, it is optimal to stop at points where

U (µ,1)−Λ(1)H(µ) = a ·µ

for some a ∈R2 with inequality U (µ,1) ≤ a ·µ+Λ(1)H(µ) holding everywhere.5 Evidently,
the lower Λ(1) is, the “wider” the distribution f becomes. The value of the multiplier
Λ(1) ≥ 0 is determined by a binding information constraint, i.e., 6

Ef [H(µ)] = χ. (7)

Figure 2 illustrates the solution. The two red dots depict the points that U tangents
a · µ + Λ(1)H(µ), i.e., the optimal stopping states. Λ(1) is pinned down by leading to
Equation (7).

µ
0.0 0.5 1.0

0.0

0.5

µ̂0

U

a ·µ+Λ(1)H(µ)

Figure 2: Real options (one period)
Computed with H(µ) = (µ−µ0)2 and parameters χ = 0.1, ρ = 0.5, I = 0.5, µ0 = 0.5.

Dynamically, the shadow price of information is a function Λ : T → R+ that sets
the price for information in every period. It is weakly decreasing: earlier information is
weakly more valuable as it gives the DM more opportunities to stop. Below, we set up the
Lagrangian to understand the determinants of the dynamic shadow price of information
for our problem.

3.1 Strong Duality & First-order Characterization

We make a few more definitions to set up the Lagrangian. Let T ◦ := T \ {0}. Define
G : T ◦→R as the gap in the inequality constraint (2):

G(f )(t) =
1
t

χ · (∫ min {t,τ}f (dµ,dτ)
)
−H

(∫
τ>t

µf (dµ,dτ)
)
−
∫
τ≤t

H(µ)f (dµ,dτ) +H(µ0)

.
5 Note that our embedding of S in R

2 converts µ ∈ S to a vector (µ,1 − µ). Hence, by a slight abuse of
notation, a ·µ represents (a0 − a1)µ+ a1, which is an affine function of µ.

6 For now, we ignore the corner case Λ(1) = 0, i.e., the information constraint is slack.
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Note that the capacity cumulates linearly in time; hence, we normalize the gap by a fac-
tor of 1

t . The relevant space of state-time distributions is ∆µ0
:= {f ∈ ∆(S × T )|Ef [µ] =

µ0, G(f ) ∈ L∞(T ◦)}. The shadow cost of information is a non-increasing function Λ on T ◦:

Λ(t) :=
∫
s≥t

dλ(s),

for some Borel measure λ on T ◦. The relevant space of measures is L := {λ ∈ B(T ◦)|Λ ∈
L1(T ◦)}, those for which the total shadow value of obtainable information is finite. We
can write the Lagrangian for our problem as

L(f ,λ) :=
∫
S×T

U (µ,τ)f (dµ,dτ) +
∫
T ◦

t ·G(f )(t)dλ(t). (8)

Then, the primal problem (P) is equivalently described by

sup
f ∈∆µ0

inf
λ∈L
L(f ,λ). (P)

The dual problem to (P) is given by

inf
λ∈L

sup
f ∈∆µ0

L(f ,λ). (D)

We show that under mild technical conditions, strong duality holds:

Lemma 2. Suppose T is finite or a compact interval, then strong duality holds, i.e. (P)=(D)
and there exists λ ∈ L that solves (D).

Proof. See Appendix B.2. Q.E.D.

We say that λ ∈ L gives the shadow cost of information if strong duality holds and λ

solves (D). Then, given the shadow cost of information λ, we can find all solutions to (P)
by maximizing the Lagrangian L(f ,λ).

Next, we characterize candidate stopping points given shadow cost of information
λ ∈ L. We proceed somewhat informally to lead up to our next theorem. Consider point
(µ,τ). The weight that measure f assigns to this point affects L linearly in three places,
and nonlinearly through the term

H

(∫
τ>t

µf (dµ,dτ)
)

for all times t ≤ τ. Notice that, even though total measure f no longer integrates to 1 in
this thought experiment, the Lagrangian is still well-defined.
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The derivative of L with respect to mass f at (µ,τ) is

lf ,λ(µ,τ) := U (µ,τ) +χ

∫
t≤τ

Λ(t)dt −
∫
t∈(0,τ)

∇H(µ̂t)dλ(t) ·µ−Λ(τ)H(µ),

where µ̂t :=
∫
τ>t

µf (dµ,dτ).7

Since we must also respect the constraints that Ef [µ] = µ0 and total measure f must
integrate to 1, it is optimal to stop only at points (µ,τ) where

lf ,λ(µ,τ) = a ·µ

for appropriately chosen vector a ∈ R
n+1, with inequality lf ,λ(µ,τ) ≤ a · µ holding at all

other suboptimal points.

Theorem 2. If for λ ∈ L, a ∈Rn+1, f ∈ F and a selection of ∇H(0), for all µ ∈ S,

lf ,λ(µ,τ) ≤ a ·µ (9)

holds with equality on the support of f , i.e.∫
(a ·µ− lf ,λ(µ,τ))f (dµ,dτ) = 0, (10)

and the complementary slackness condition
∫
G(f )(t)dλ(t) = 0 holds. Then, f solves problem

(P), and λ gives the shadow cost of information.
Conversely, if λ gives the shadow cost of information, then for all f solving (P) with bounded

lf ,λ near τ = 0, there exists a ∈Rn+1 such that for all µ ∈ S, (9) and (10) hold for a selection of
∇H(0).

Proof. See Appendix B.3. Q.E.D.

We illustrate Theorem 2 by revisiting Example 1 in a dynamic setting.

Example 2 (Real options - two periods). Consider the real options problem in Example 1
but with T = {0,1,2}. There are two possible times to stop τ = 1 and τ = 2. Let the shadow
cost of information be Λ(1) and Λ(2) at t = 1 and t = 2, respectively.

In period 1, as we have already derived in Example 1, the DM’s stopping utilities and
continuation values at any stopping state µ1 must be at level

a1 ·µ+Λ(1)H(µ) (11)

7 When t ≥ t̄ := supsupp(f ), µ̂t = 0 and the subdifferential ∇H(0) is a set. A selection of ∇H(0) is needed
to specify lf ,λ. For notational simplicity, we denote the selection of ∇H(0) also by ∇H(µ̂t) when writing lf ,λ.
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for some a1 ∈ R2. In Figure 3, the top blue solid curve corresponds to (11) and contains
two possible optimal stopping states µ1 for our example — the red dot, which corresponds
to stopping, and the black cross, which corresponds to belief µ1 = µ̂1 with which the DM
would continue to the second period.

The period 2 problem is the same as the period 1, except that the “prior” is µ̂1. Anal-
ogously, in period 2, the DM’s stopping utilities must be at level

a2 ·µ+Λ(2)H(µ) (12)

for an appropriate multiplier a2 ∈ R
2. The bottom blue solid curve in Figure 3 corre-

sponds to (12) in our example. There are two possible optimal stopping states of µ2 on
this curve, depicted by the two red dots.

What is the relation between the two blue solid curves (11) and (12)? The portion of
(12) between the two red dots is the DM’s value function at time t = 2 when he can buy
or sell information for the price of Λ(2). Hence, the continuation value function at time 1
in case of not stopping is given by

a2 ·µ+Λ(2)H(µ) +Λ(2)χ, (13)

since the DM can sell the χ amount of information acquired over time interval (1,2] at
price Λ(2). The thin red curve in Figure 3 corresponds to (13). From optimality, the
continuation value at µ̂1 (in the event of not stopping at time 1) must be on curve (11),
and any suboptimal continuation value must be weakly below. It follows that the thin red
curve (13) must lie weakly below the top blue curve (11), with smooth pasting at belief
µ̂1, as illustrated in Figure 3.

µ
0.0 0.5 1.0

0.0

0.4

µ̂0

a1 ·µ+Λ(1)H(µ)

µ̂1

a2 ·µ+Λ(2)H(µ)

a2 ·µ+Λ(2)H(µ) +Λ(2)χ

Figure 3: Real options (two periods)
Computed with H(µ) = (µ−µ0)2 and parameters χ = 0.1, ρ = 0.5, I = 0.5, µ0 = 0.5.

The smooth-pasting condition at µ̂1 implies

a2 +Λ(2)∇H(µ̂1) +χΛ(2)1⊤ = a1 +Λ(1)∇H(µ̂1),8 (14)
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or equivalently, a2 − a1 = ∇H(µ̂2)λ(2)−χΛ(2)1⊤, which pins down a2 from a1.

Extending the expressions (14) to the general setting implies that dat/dt = ∇H(µ̂t)λ(t)−
χΛ(t)1⊤. Therefore, the DM’s continuation value on the path of the optimal solution is of
the form

at ·µ+Λ(t)H(µ) dt, where at = a0 +
∫
t∈(0,τ)

∇H(µ̂t)dλ(t)−χ
∫ τ

0
Λ(t)1⊤,

which is exactly the FOC (9). This exercise delineates the economic implication of the
FOC (9). The constrained optimization problem (P) is equivalent to an unconstrained
problem with objective function

lf ,λ(µ,τ)− a ·µ = U (µ,τ)︸  ︷︷  ︸
Stopping payoff

− Λ(τ)H(µ)︸     ︷︷     ︸
Shadow cost of

“buying” information

+ χ

∫
t≤τ

Λ(t)dt︸          ︷︷          ︸
Shadow benefit of

“selling” endowments

− ât︸︷︷︸
Shadow cost/benefit of
martingale constraint

,

where ât = a0 +
∫
t∈(0,τ)

∇H(µ̂t)dλ(t). In the unconstrained problem, the DM is endowed
with χ unit of information per unit time. She “exploits” information to come to a stop
and obtain a stopping payoff U . If there is either a surplus or a deficit of information,
she can sell or buy information at price Λ(t). The violation of the martingale constraint
Ef [µ] = µ0 is punished at prices ât.

With Theorem 2, solving the exploration-stopping problem boils down to solving the
shadow prices Λ(t). Let µ∗(t) denote the maximizer of lf ,λ(µ,τ) − a · µ for every t. Then,
the equality condition (10) defines an integral equation for Λ(t) on the support of f :

U (µ∗(t), t) +χ

∫
s≤t

Λ(s)ds −Λ(t)H(µ∗(t))− ât ·µ∗(t) = 0.

Therefore, we obtain a unified method for analytically solving the dynamic exploration-
stopping problem. In Section 3.2 and Section 4, we leverage this method to derive gen-
eral implications and analytical solutions in various economic applications. We revisit
the first-order conditions (9) and (10) in Section 4.1, where we develop further under-
standing of the optimal exploration-stopping problem from the point of view of dynamic
programming.

3.2 Implications and extensions

In this section, we derive several general implications of optimal exploration and stop-
ping. Moreover, we derive an extension that generalizes our methodology to handle the
case with endogenous capacity.

8Note that the smooth-pasting condition matches both the level and the slope of the value function in
R

1, which is equivalently represented by a slope condition in R
2 due to our HD-1 normalization.
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3.2.1 Coarse support

In Example 2, the solution exhibits a coarse support property, illustrated by Figure 3,
where the stopping distribution involves at most two points in the support in each period.
In Proposition 1 below, we prove that the coarse support property holds generally, with
the size of support bounded by n+ 2.

Proposition 1. Suppose time is discrete, i.e. T = {t0 = 0, t1, . . . , tk} and U ∈ C(S × T ), there
exists f ∗ solving problem P s.t. ∀t ∈ T ,

|supp(f ∗(·, t))| ≤ n+ 2.

Proof. See Appendix C.2. Q.E.D.

The numerical example below (depicted by Figure 4) shows that the bound n + 2 is
tight. In this example, we take the two period problem in Example 2, and add one extra
possible option that pays in the low state. The stopping distribution of τ = 2 involves
three points, each corresponding to one possible option.

µ
0.0 0.5 1.0

0.0

0.4

µ̂0
µ̂1

Figure 4: Illustration of Proposition 1

We state Proposition 1 in discrete time because the “support” of f at a single t is mean-
ingless in continuous time. Nevertherless, Proposition 1 implies that the continuous-
time problem has an approximate discrete solution that has coarse support. Technically,
Proposition 1 is an extension of the coarse support property of the static information de-
sign problems (Doval and Skreta 2022; Kamenica and Gentzkow 2011; Zhong 2018) to
the dynamic environment.

3.2.2 Time preferences

In the literature on dynamic information acquisition (see, e.g., Zhong 2022), a stark
prediction is that the optimal exploration strategy is “Poisson”, i.e., the martingale pro-
cess either drifts along a deterministic path or jumps directly to the stopping region. In
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this section, we reveal that the optimality of such exploration strategies is closely related
to the DM’s time preference. For tractability, we consider the continuous time setting
where T = R+ and make several technical assumptions on U : ∀µ ∈ S, U (S, ·) ∈ C(2)(R) and
U ′t (µ,t) < 0. In what follows, we analyze three cases corresponding to convex, linear, and
concave U (µ, ·) as a function of time.

Convex time preferences and Poisson process. Convex time preference is the most
commonly adopted modeling assumption as it nests the canonical case of exponential
discounting, where U (µ,t) = e−ρtu(µ). More generally, it also covers settings with time-
varying discount rate like U (v, t) = e−ρ(t)u(µ), where ρ′′ ≤ 0 (e.g. hyperbolic discounting).

Proposition 2 (Convex time preference). Suppose ∀µ,t ∈ S × T , ∂2

∂t2U (µ,t) > 0. Then, if f
solves (P) and λ gives the shadow cost of information and lf ,λ is bounded, the (⟨µt⟩, τ) that
implements f must satisfy

Prob
(
µt = µ̂t

∣∣∣t < τ
)

= 1,

where µ̂t = E[µτ |τ > t].

Proof. See Appendix C.3. Q.E.D.

∂2

∂t2U (µ,t) > 0 means that the stopping utility is convex in time, i.e., the DM wants
to diversify the decision time. Proposition 2 predicts that the process that implements
f must be degenerate conditional on continuation. In other words, the optimal martin-
gale process must be a Poisson process that always jumps into the stopping region. This
general result nests the models in Zhong 2022 and Hébert and Woodford 2023 that pre-
dict a Poisson belief process under exponential discounting. Moreover, it reveals that the
feature of the Poisson learning process is the implication of the convexity exhibited by
exponential discounting.

On a side note, Proposition 2 also predicts the uniqueness of the martingale process
that embeds f . Since the stopping behavior is fully characterized by f , the multiplicity
of the optimal process comes from the undetermined interim process µt |t < τ . In the
environment described by Proposition 2, the interim process is uniquely pinned done
by µ̂t. Therefore, the process that embeds f is essentially unique (⟨µmin{t,τ}⟩ has unique
distribution).

Linear time preferences and Brownian process. In contrast to the convex case, when
U is linear in t, the optimal process exhibits multiplicity and can behave very differently.
We begin with a result showing that Equations (C) and (P) reduce to a static problem.
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Proposition 3 (Linear time preference9). Suppose U (µ,t) = v(µ) − κt, then, (⟨µt⟩, τ) solves
(C) if and only if the distribution of µτ solves

sup
π∈∆(S)

Eπ[v(µ)−κ/χ (H(µ)−H(µ0))] (15)

subject to Eπ[µ] = µ0.

Proof. See Appendix C.4. Q.E.D.

Given π ∈ ∆(S) that solves Equation (15), one simple Poisson process that satisfies the
information constraint and has the distribution of µτ given by π is the “dilution” of π: µt
stays constant from µ0 and jumps to a random location according to π at constant Poisson
rate χ

Eπ[H(µ)−H(µ0)] . However, it is not the only such process. Another simple example is
specified by

f (µ,τ) = π(µ)× δ
τ=Eπ[H(µ)−H(µ0)]

χ
,

namely, the stopping time is degenerate. Any such process solves (C) by Proposition 3.
In fact, Hébert and Woodford 2023 shows for a payoff of the form in Proposition 3,

there exists a Brownian martingale that solves (C). Hébert and Woodford 2023 consid-
ers optimal learning for this class of utility functions, assuming that µt is restricted to
Brownian martingale described by SDE

dµt = σt dBt (16)

that satisfies our information constraint (1). Here, Bt is a Brownian motion of dimension
n and σt is any vector whose entries add up to 0 to ensure that µt stays in the probability
simplex. In this setting, the following result holds.

Proposition 4. (Hébert and Woodford 2023) With constant waiting cost, the dynamic utility
maximization problem under Brownian learning (16) subject to (1) is equivalent to Equa-
tion (15).

Our general results regarding the convex and concave time preferences imply that the
optimality of the Brownian learning process is non-generic: it is a knife-edge case that
occurs only when the solution exhibits great multiplicity.

Concave time preferences and exploration. When the time preference is concave, we
show that the optimal stopping time is contained in a window of bounded length, termed
the “exploitation window”. Hence, when the window is sufficiently short, the optimal

9Proposition 3 was proved in the working paper version of Zhong 2022.
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exploration policy necessarily involves “pure exploration” at the beginning, i.e., acquiring
information that will only be used later in the exploitation window. Define two functions:

J(t) = max
µ∈S

U ′t (µ,t);

J(t) = min
µ∈S

U ′t (µ,t).

Evidently, J(t) ≤ J(t). When U ′′t (µ,t) < 0, both J(t) and J(t) are negative and strictly de-
creasing. Therefore, J−1 ◦ J defines a function satisfying J−1 ◦ J(t) ≥ t. The gap J−1 ◦ J(t)− t
measures the variation of U ′t across different µ’s. To state the result regarding concave
time preference, we impose a technical regularity condition on the solution.

Definition 1. Given f solving (P) and λ giving the shadow cost of information. Let t =
supt Supp(f ). (f ,λ) are regular if (i) ∃µ∗ = limt→t−

µ̂t
f (τ>t) , (ii) (µ∗, t) ∈ Supp(f ), and (iii)

Λ(t−Λ(t))
t−t is bounded for t→ t

−.

Definition 1 requires that the continuation belief converges to a belief that is in the
support of the optimal f when t approaches the boundary of the support.

Proposition 5 (Concave time preference). Suppose ∂2

∂t2U (µ,t) < 0, regular f solves (P) and
λ gives the shadow cost of information and lf ,λ is bounded. Let t = inft∈T Supp(f ), t =
supt∈T Supp(f ),

t ≤ J−1 ◦ J(t).

Proof. See Appendix C.5. Q.E.D.

Proposition 5 states that when the time preference is concave, the stopping time must
be contained within an interval, whose length is determined by the variation of U ′t . In the
extreme case where U ′t (µ,t) does not vary with µ (e.g. U is additively separable), J and J

coincide; hence, the optimal τ must be degenerate. More generally, fixing the variation of
U ′t across v, the interval is narrower when U is more concave in time, i.e., when U ′t (v, t)
decreases faster.

The intuition for the result is exactly the opposite of the convex case. The concave
utility in time means the DM wants concentrated decision time. An indirect implication
of Proposition 5 is that concavity of the time preference incentivizes the DM to explore
without exploitation for a period of time before stopping so that she can stop quickly
within a short window of time.

We illustrate Proposition 5 using a numerical example, depicted by Figure 5. Figure 5
illustrates the distribution of f on the time dimension (the red histogram). J and J are
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Figure 5: Concave time preference
Computed with U (µ,t) = max{µ− 0.5,0} · (1− c1t)− c2t

2, where c1 = 1/16, c2 = 1/32.

the two black lines. The dotted segment has length J−1 ◦ J(t)− t, which equals c1
c2

for every
t in this example.

The analysis in Section 3.2.2 nests a series of works on dynamic information acquisi-
tion and provides the near-complete characterization of the pattern of optimal informa-
tion acquisition strategy. The Poisson learning is justified by convex time preferences (see
Zhong 2022 and D. Chen and Zhong 2024). Brownian learning is justified by linear time
preferences (see Hébert and Woodford 2023). The pure exploration is justified by concave
time preferences (see D. Chen and Zhong 2024).10 To further understand the connection
between time preference and exploration, in Section 4.2, we provide the solution to an
information acquisition problem under fully general time preference.

3.2.3 Endogenous capacity

In many applications, the DM may choose the rate of information arrival at cost. This
section shows that our main theorems generalize to such a setting. The DM chooses mar-
tingale ⟨µt⟩ in S, a bounded process ⟨χt⟩ in R+ and a stopping time τ that are measur-
able w.r.t. the filtration ⟨Ft⟩ generated by ⟨µt⟩. The tuple (⟨µt⟩,⟨χt⟩, τ) is admissible if
∀t, t′ ∈ T ,t′ > t

E [H(µt′ )−H(µt)|Ft] ≤ E

∫ t′

t
χsds

∣∣∣∣∣∣Ft
 ,

denoted by (⟨µt⟩,⟨χt⟩, τ) ∈M. Given the learning rate χt at time t, the DM pays flow cost
of ct(χt), where ∀t, ct is an increasing and convex function. Then, the DM’s optimization

10 Following a different approach, Georgiadis-Harris 2024 predicts pure exploration as an outcome of
exogenous random stopping time that is not controlled by the DM.
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problem is

sup
(⟨µt⟩,⟨χt⟩,τ)∈M

E

[
U (µτ , τ)−

∫
t≤τ

ct(χt)dt
]
. (C1)

Analogous to the derivation of (P) from (C), a “relaxed” problem of (C1) is

sup
f ∈∆(S×T ),χ∈L∞(T )

∫
U (µ,τ)f (dµ,dτ)−

∫
t∈T

ct(χt)(1−F(t))dt (P1)

s.t.
∫
τ≤t

H(µ)f (dµ,dτ) +H

(∫
τ>t

µf (dµ,dτ)
)
−H(µ0) ≤

∫
s≤t

χs(1−F(s))ds,

where F(t) =
∫
τ<t

f (dµ,dτ).11 Note that in (P1), we implicitly restrict the stochastic learn-
ing rate χt to be a deterministic function of time, while in (C1), ⟨χt⟩ is a stochastic process.
Nevertheless, we prove in Lemma 3 that such restriction is without loss.

Lemma 3. (C1)=(P1) and for all (f ,χ) feasible in (P1), there exists admissible strategy (⟨µt⟩,χt, τ)
of (C1) s.t. (µτ , τ) ∼ f .

Proof. See Appendix C.6. Q.E.D.

Then, we can write the Lagrangian of Equation (P1) as

L(f ,χ,λ) :=
∫

U (µ,τ)f (dµ,dτ)−
∫

ct(χt) (1−F(t))dt +
∫ ∫

s≤t
χs (1−F(s))ds

−H(
∫
τ>t

µf (dµ,dτ))−
∫
τ≤t

H(µ)f (dµ,dτ) +H(µ0)

dλ(t)

The dual problem is

inf
λ∈L

sup
f ∈∆µ0 ,χ∈L

∞
L(f ,χ,λ). (D1)

The same technical conditions as in Lemma 2 guarantee strong duality.

Lemma 2-A. Suppose T is finite or a compact interval, then strong duality holds,i.e.
(P1)=(D1) and there exists λ∗ ∈ L that solves (D1).

Proof. See Appendix C.7 Q.E.D.

Lemma 2-A allows us to characterize the solution of Equation (P1) via first order con-
ditions. Define the derivative of L with respect to f at (µ,τ) as:

lf ,χ,λ(µ,τ) := U (µ,τ)−
∫
t≤τ

ct(χt)dt +
∫
t≤τ

Λ(t)χtdt −
∫
t<τ
∇H(µ̂t)dλ(t) ·µ−Λ(τ)H(µ).

11 Whether t is included in the domain is inconsequential since it only affects F(t) on a zero measure set.
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The FOC w.r.t. f at (µ,τ) is

lf ,χ,λ(µ,τ) ≤ a ·µ, with equality on supp(f ). (17)

The FOC w.r.t. χ at τ is

c′τ(χτ ) = Λ(τ). (18)

Theorem 2-A. If there exists λ,f ,χ,a and a selection of ∇H(0) such that (17),(18) and the
complementary slackness condition hold, then (f ,χ) solves (P1).

Conversely, if λ gives the shadow cost of information, for all (f ,χ) solving (P1) with
lf ,χ,λ bounded from above near τ = 0, there exists a ∈ Rn+1 such that (17),(18) hold for a
selection of ∇H(0).

Proof. See Appendix C.8. Q.E.D.

The FOC (17) is the same as that with exogenous capacity constraint in our baseline
model, except that the shadow price of information Λ(t) must now coincide with the real
marginal cost of information c′t(χt) per the extra FOC (18).

4 Applications

4.1 Real Options

We have already analyzed the real options problem with one period and two periods
in Examples 1 and 2, respectively. Recall from Example 1 that U (µ,τ) = e−ρτ max {µ− I,0},
representing a DM deciding whether to make a risky investment to obtain a stochastic
payoff µ− I . In what follows, we analyze the real options problem with active exploration
in continuous time and connect it to the canonical problem with passive exploration. 12

Passive exploration: Consider the canonical setting where the DM learns information
about a potential investment passively, so the expected value of investment follows

dµt = σ dZt, (19)

were Z is a Brownian motion. For this problem, there exists a closed-form solution in
which it is optimal to invest when µt reaches the critical threshold of

µ∗ = I +
σ√
2ρ

.

12 The canonical real options problem does not limit the lower bound of the state. To make the analysis
consistent, in this example, we let S have a sufficiently negative lower bound.
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The value function is given in closed form by

VP (µ) =

 (µ∗ − I)exp
(√

2ρ
σ (µ−µ∗)

)
if µ ≤ µ∗

µ− I ifµ > µ∗.

Active exploration: How does this solution change if, instead of learning passively,
the DM actively collects information subject to the constraint (1)? Specifically, assume
that H(µ) = µ2 and χ = σ2 so that the choice to learn Brownian information leads pre-
cisely to equation (19). This case is isomorphic to the information acquisition model of
Zhong 2022 up to scaling and relabeling, which characterized the value function via the
Hamilton-Jacobi-Bellman (HJB) equation

V (µ) =

 max
ν

χ
ρ

ν − I −V (µ)−V ′(µ)(ν −µ)
H(ν)−H(µ)−H ′(µ)(ν −µ)

if µ ≤ µ∗

µ− I if µ > µ∗,
(20)

where µ∗ ≥ µ∗ since the value function under active learning V (µ) must be (weakly) higher
than VP (µ). The left panel of Figure 6 illustrates these properties by comparing value
functions V (µ) and VP (µ).
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Figure 6: Active and passive learning
Computed with H(µ) = (µ−µ0)2 and parameters χ = 0.1, ρ = 0.5, I = 0.5, µ0 = 0.5

We also see that V (µ) is significantly higher than VP (µ) when the option is deep out
of the money. This is where active learning is different. While it takes an extremely long
time for the option to get in the money due to volatility alone, active learning does much
better by “shooting for the moon”. Under active learning, optimal policy performs exper-
iments that allow µt to jump up to ν(µt) with Poisson intensity defined by the information
constraint (1), with downward drift in the event of no jump. The right panel of Figure 6
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illustrates that ν(µ) starts from µ̄∗ and increases as µ drifts down. As the left panel indi-
cates, experiments that reveal a high value of µ with a small probability can improve the
option value significantly.

In what follows, we illustrate that our method nests the dynamic programming ap-
proach in the special case of exponential discounting by deriving Equation (20) from our
first-order conditions. Let e−ρtV and e−ρtV ′ be the level and slope of atµ̂t + Λ(t)H(µ̂t) at
µ̂t. Then, the optimal stopping state µ∗ is determined by Equation (10):

0 = max
µ

e−ρt(µ− I)− (atµ+Λ(t)H(µ)) (21)

⇐⇒Λt = e−ρt max
µ

(µ− I)−V −V ′(µ− µ̂t)
H(µ)−H(µ̂t)−H ′(µ̂t)(µ− µ̂t)

. (22)

The equivalence of Equations (21) and (22) is illustrated in Figure 7, where the pink line
represents e−ρtV + e−ρtV ′(µ − µ̂t). Then, (21) corresponds to minimizing the segment α

and (22) corresponds to maximizing the ratio γ/β, which are both attained at the red dot.
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Figure 7: Derivation of the HJB equation

We have derived in Example 2 that the levels of the blue curves at µ̂t in two peri-
ods dt apart differ by χΛtdt. Since the value function is stationary due to exponential
discounting, this difference is e−ρtV − e−ρ(t+dt)V . Therefore, taking dt→ 0,

χΛt = ρe−ρtV . (23)

Combining Equations (22) and (23),

ρ

χ
V = max

µ

µ− I −V −V ′(µ− µ̂t)
H(µ)−H(µ̂t)−H ′(µ̂t)(ν − µ̂t)

,

which is exactly Equation (20), where the value function is given by

V (µ̂t) = eρt (atµ̂t +Λ(t)H(µ̂t)) .
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Of course, for a more general time preference that is not time-stationary, the HJB equation
approach involves much more complicated partial differential equations, rendering the
method underpowered. In the following sections, we illustrate the power of our method
via two applications where the DM exhibits a general time preference.

4.2 Time preferences: exploration, exploitation, precision, and speed.

In this application, we apply our method to a canonical information acquisition prob-
lem with binary decision. There is an unknown payoff relevant state x ∈ {L,R}, with equal
prior probability. There are two possible actions a ∈ {l, r}. The Bernoulli utility is 1

2ρ(t) if
the action matches the state (l|L or r |R) and −1

2ρ(t) otherwise (l|R or r |L). We assume that
the discount function ρ ∈ C(2)

R+ is decreasing and limt→∞ρ(t) = 0.
Let S = ∆(X) = [0,1]. The DM chooses her belief process ⟨µt⟩, the stopping time τ , and

an action upon stopping. In this problem, we consider the variation constraint defined
by H(µ) = |µ− 0.5|α, where α > 1. The stopping utility is

U (µ,t) = ρ(t) · |µ− 0.5|.

The FOC Equations (9) and (10) reduces to:

ρ(t)|µ− 0.5|+
∫
s≤t

χΛ(s)ds −Λ(t)|µ− 0.5|α ≤ b, (24)

with equality on the support of f .13 It is easy to verify that µ∗(t) = (ρ(t)/Λ(t))
1

α−1 maxi-
mizes the LHS. Let ξ(t) be the minimal gap in the inequality for every t. Equation (24)
reduces to:

α − 1
α

ρ(t)
(
ρ(t)
αΛ(t)

) 1
α−1

+χ

∫
s≤t

Λ(s)ds+ ξ(t) = b, (25)

with ξ(t) = 0 on the support of f .

4.2.1 The pattern of exploration

We first characterize the optimal pattern of exploration. We make the following as-
sumption on the discount function ρ:

Assumption 1.
{
t
∣∣∣ d
dt2ρ(t)

α
α−1 > 0

}
and

{
t
∣∣∣ d
dt2ρ(t)

α
α−1 < 0

}
each is constituted of finitely many

intervals.
13 Observe that the problem has a solution that is symmetric around µ = 0.5. Hence, µ̂t ≡ (0.5,0.5) and
∇H(µ̂t) ≡ 0. This is a useful trick for simplifying the problem in any symmetric setting.
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Assumption 1 states that the convexity of ρ
α

α−1 only switches finitely many times. It is a
purely technical condition that ensures that the optimal exploration policy also switches
pattern finitely many times.

Proposition 6. Given Assumption 1, suppose f , λ and ξ ∈ CR+ solve Equation (25). Then,
three finite collections of intervals form a partition of conv(supp(f )):

1. RegionA where ξ(t) > 0 and λ(t) ≡ 0. Let (t′, t′′) be such an interval, the following holds:

(a) d
dt2ρ(t)

α
α−1 ≤ 0 for t→ t′′− ;

(b) If t′ > 0, then d
dt2ρ(t)

α
α−1 switches sign at least once in (t′, t′′).

(c) f (S, (t′, t′′)) = 0.

2. Region E where ξ(t) ≡ 0 and λ(t) > 0. In this region, the following holds:

(a) supp(f ) =
{(

0.5±
(

ρ(t)
αΛ(t)

) 1
α−1

, t

)}
t∈E

.

3. Region R where ξ(t) = 0 and d
dt2ρ(t)

α
α−1 = 0.

Proof. See Appendix D.1. Q.E.D.

Proposition 6 shows that the optimal information acquisition strategy involves three
distinct patterns that are dictated by the convexity of the (adjusted) discount function
ρ(t)

α
α−1 , or equivalently, the time-risk attitude. 14

• Pure exploration region A: in this region, there is no stopping probability (property
1.c). Therefore, information is “accumulated” for future use. A pure exploration
period always involves a period of “convex then concave” ρ(t)

α
α−1 (property 1.a &

1.b). The key driving force behind pure exploration is that the concave part of
the discount function implies time-risk aversion. Therefore, the DM would like to
accumulate knowledge so that she can utilize the accumulated knowledge later to
make decisions within a short period — the time risk is minimized.

• Full exploitation region E: in this region, Equation (2) is binding, implying that the
continuation belief of any implementing belief process must be degenerate and con-
stant. Therefore, information is “exploited” at the maximal rate to reach immedi-
ate decisions. A full exploitation period typically involves “concave then convex”

14 Since α > 1, ρ
α

α−1 is “more convex” than ρ. So the convexity of ρ(t)
α

α−1 does not exactly match the
convexity of ρ. The discount function is adjusted to accommodate the fact that achieving the same decision
quality is easier later than earlier. Therefore, the later payoffs are discounted further by a factor of ρ

1
α−1 .

In what follows, we refer to the “time-risk attitude” as defined by the convexity of the adjust discount
function.
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ρ(t)
α

α−1 . The key driving force behind exploitation is that the convex discount func-
tion means time-risk loving. Therefore, the DM maximizes the time risk by induc-
ing a dispersed decision time.

Note that exploration still continues during the period of full exploitation. How-
ever, all information explored is immediately exploited by stopping and making a
decision.

• Time-risk neutral regionR: in this region, the adjusted discount function ρ
α

α−1 is lin-
ear, implying that the DM is time-risk neutral. Unlike A and E, there is no unique
prediction of the optimal belief process since the DM is essentially indifferent be-
tween different distributions of the stopping time that have the same expectation.

It is worth pointing out that the switch between pure exploration and full exploitation
strictly precedes the switch of the time-risk attitude. This is because the consequence of
pure exploration is not instantaneous — it takes time to accumulate sufficient informa-
tion to make a decision. Therefore, the DM will start to accumulate information while
anticipating the time-risk aversion in the near future. Vice versa, anticipating time-risk
loving in the sufficiently near future, the DM starts full exploitation right away. Proposi-
tion 6 immediately implies the following corollary.

Corollary 2.1. The optimal policy involves pure exploration (full exploitation) when ρ(t)
α

α−1

is globally concave (convex).

Figure 8 illustrates Proposition 6 and Corollary 2.1. From left to right, the first row of
each column depicts the optimal information acquisition policy when the discount func-
tion ρ is given by the second row. In all figures, the red dots are the stopping beliefs, and
the blue dots are continuation beliefs (plotted only when uniquely determined). The first
two columns show the two corner cases in Corollary 2.1. In column 1, ρ(t) is the stan-
dard exponential discounting function, which implies global time-risk-loving preference.
The optimal belief stays at the prior until it jumps to one of the two constant stopping
boundaries at a Poisson rate (pure exploitation). In column 2, the DM is globally time-risk
averse. The optimal stopping time is degenerate (pure exploration). The belief process
that implements the optimal f is not unique.

Column 3 illustrates a general case where the DM switches from time-risk averse to
time-risk loving twice. The optimal belief process switches from pure exploration to
exploitation exactly twice. As is predicted by Proposition 6, point (i), each exploration
region (except the first one) covers at least one time-risk-loving region and ends in a time-
risk-averse region. In other words, the switch between the two patterns strictly precedes
the switch of time-risk attitude.
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Figure 8: Information acquisition & time-risk preference

As a final remark, while the time-risk neutral region R might exist in general (where
ρ is flat), there always exists an optimal exploration strategy that consists of only pure
exploration and full exploitation.

Definition 2. f ∈ ∆(S × T ) is a pure strategy if it alternates between only pure exploration
and full exploitation, i.e.

∫
G(f )(t)f (dµ,dt) ≡ 0.

Proposition 7. The information acquisition problem has a pure strategy solution f .

Proof. See Appendix D.2 Q.E.D.

4.2.2 Speed v.s. accuracy

In this section, we study the speed-accuracy tradeoff in dynamic exploration. We
focus on the full exploitation case (ρ(t)

α
α−1 is globally convex) where decision time has full

support. The accuracy of decision is measured using parameter κ(t) = (µ∗(t) − 0.5)α−1 =
ρ(t)
αΛ (t). Evidently, κ(t) is isomorphic to the precision of the posterior belief upon stopping
as well as the stopping payoff. Equation (25) reduces to the following ODE about κ:

−
dlog(ρ(t))

dt
=
κ′(t) +χ ·κ(t)

−1
α−1

(α − 1)κ(t)
. (26)

Note that the LHS of Equation (26) is the discount rate (of an exponential discount func-
tion). Therefore, the sign of the rate of the LHS represents whether there is accelerat-
ing/decelerating discounting. Proposition 8 below shows that it is crucially related to the
evolution of decision quality.
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Proposition 8.

• Increasing accuracy: κ′(t) > 0 & κ′′(t) < 0 =⇒ decreasing discount rate.

• Decreasing accuracy: κ′(t) < 0 & κ′′(t) > 0 =⇒ increasing discount rate.

• Constant accuracy: κ′(t) ≡ 0 ⇐⇒ constant discount rate.

Proof. See Appendix D.3. Q.E.D.

Proposition 8 provides a foundation for the speed-accuracy/inaccuracy tradeoffs that
are observed in binary choice experiments (see a survey by Ratcliff, P. L. Smith, et al.
2016). Instead of analyzing a parametric drift-diffusion model (DDM) (see, e.g., the DDM
with optimal stopping studied in Fudenberg, Strack, and Strzalecki 2018), we fully en-
dogenize the exploration process. The main focus of Proposition 8 is analogous to the
study of time-varying stopping boundaries in the DDM models. Our model provides a
closed-form characterization of the boundary and shows that its slope is closely related
to the slope of the discount rate.

Proposition 8 predicts that the typical speed-accuracy tradeoff observed in the bi-
nary choice experiments is rationalized by a decreasing discount rate. This is intuitive
— anticipating decelerating discounting in the future, the DM would take advantage of
that and back-load the high-accuracy decisions. On the other hand, the speed-accuracy
complementarity occurs under accelerating discounting, which fits decisions under time
pressure. Constant accuracy occurs if and only if the discount rate is constant.

4.3 Continuous-time contest

In the second application, we apply our model to study a strategic contest. In partic-
ular, we are interested in the continuous-time contest setting. While the literature has
studied competition in the dimension of the stopped state of a stochastic process (Seel
and Strack 2013, Seel and Strack 2016) and the dimension of stopping time (Park and
L. Smith 2008) separately, we study a novel setting where (i) both the stochastic process
and stopping time are fully endogenized and (ii) contestants’ payoffs depends on both
the state and stopping time.

We assume that there are n ≥ 2 contestants, each choosing privately a martingale pro-
cess ⟨µit⟩ in S = [−M,M] starting at µi0 = 0 and a stopping time τ i . The payoff to contestant
i given the profile of stopping time t and stopping state µ is:

U i(µi ,t) = e−rt
i
· |µi | ·

1ti=min{t}
#argmin{t}

.
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Figure 9: Decision accuracy & discount rate

The interpretation is that the contestants compete in conducting research on the same
topic. Each contestant chooses privately how she explores, which affects the stochastic
quality ⟨µit⟩. The first contestant who stops (submits a paper/grant) receives a reward
(publishing a paper or receiving a grant) proportional to the quality of the research |µit |.
For tractability, we assume that all contestants have the same variation bound specified
by H(ν) = |ν|α, where α > 1.

The equilibrium of the contest is specified by a collection of independent exploration-
stopping strategies (⟨µ∗it ⟩, τ∗i)ni=1 s.t. ∀i,

(⟨µ∗it ⟩, τ∗i) ∈ arg max
(⟨µit⟩,τ i )∈Mi

E[U i(µi
τ i
,τ∗−i , τ i)].

In an equilibrium, each contestant takes other contestants’ strategies as given and
best responds by choosing her own strategy. By defining the equilibrium this way, we
implicitly assume that each contestant’s research progress is private; hence, the strategy
of player i does not depend on the realization of (⟨µ−it ⟩, τ−i). We are interested in equilibria
with the following technical properties:

Definition 3. Equilibrium (⟨µ∗it ⟩, τ∗i)ni=1 is a pure strategy equilibrium if all f i ∼ (µ∗i
τ∗i
, τ∗i)

are pure strategies.

In other words, pure strategy equilibria are those in which each contestant alternates
between pure exploration and exploitation as was described in Definition 2. The technical
restrictions allow us to characterize all equilibria of the contest.
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Assumption 2. χ
(α−1)r <Mα.

Assumption 2 guarantees that the equilibria we identify will be interior. It is without
loss of generality as M can be chosen arbitrarily large.

Proposition 9. Suppose Assumption 2 holds. Let ζ = max {1− (n− 1)(α − 1),0}. In any pure
strategy equilibrium of the game, all players adopt the identical strategy indexed by parameter
t ∈ [0,+∞]:

• On the domain [0, t], µt starts at 0 until it jumps to µ∗t or −µ∗t at rate 1
2λ
∗
t and τ is the

first jump time of µt, where15

µ∗t :=

χr ζ(1− e(α−1)r(t−t))
α − 1


1
α

λ∗t :=
(α − 1)r

ζ(1− e(α−1)r(t−t))

Proof. See Appendix D.4. Q.E.D.

Proposition 9 states that contestants use pure exploitation strategy in all pure strat-
egy equilibria of the game. To illustrate the proposition, in figure Figure 10, we plot
three possible equilibria of the game. In Figure 10(a), we plot the stopping quality |µ∗t | as
functions of t. Each color corresponds to one equilibrium in the game. In Figure 10(b),
we plot the “effective discount factor”, i.e., e−rt scaled by the probability that at least one
other contestant has stopped in the equilibrium.

As we have discussed in Section 4.2, Proposition 9 implies an endogenous time-risk
loving preference among all contestants. As is illustrated by Figure 10(b), the effective
discount factors are convex in time, justifying the Poisson exploration strategy. Impor-
tantly, Proposition 9 also predicts uniqueness: the endogenous effective discount factors
are always convex. This is because, in the contest, each contestant solves the single-agent
exploration-stopping problem, taking others’ strategies as given. Propositions 6 and 7
implies that the only alternative exploration strategy that can occur is pure exploration.
However, pure exploration leads to concentrated decision time (a point mass in stopping
time). The point mass can never appear in equilibrium as other contestants can easily
sacrifice quality a little bit and “undercut” by stopping a little earlier.

A key message of Proposition 9 is that contest rules have strong implications on the
pattern of exploration. In our application, the “winner takes all” rule generates endoge-
nous time-risk loving, leading to quite risky exploration policies. Contestants employ the
full exploitation strategies that count on rare but significant breakthroughs.

15 When t = 0 or ζ = 0, the strategy stops immediately at 0. When t = +∞, we define e(α−1)r(t−t) ≡ 0.
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Figure 10: Equilibrium strategies of the research contest game

4.3.1 Private v.s. public contest

So far, we focus on the case where each contestant’s progress is private. A rather inter-
esting observation is that the equilibria identified in Proposition 9 remain equilibria (up
to minor modifications) even if each contestant’s progress is revealed. The key observa-
tion is that under the learning strategy specified in Proposition 9, the event min{τ∗−i} > t

pins down a unique history for period t, that is, all µ−it remain at 0.5. Then, the hazard
rate for s ≥ t

ωi(s) = r + (n− 1)λ∗s

remains the same conditional on this history. Therefore, conditional on any history where
no contestant has stopped yet, strategy (⟨µ∗it ⟩, τ∗i) remains the best response for contestant
i. Of course, conditional on the event min{τ∗−i ≤ t}, i.e., someone has already stopped,
no contestant has any incentive to learn anymore. Therefore, the equilibrium strategy
involves immediate stopping.

5 Conclusion

In this paper, we characterize the possible outcomes of exploration and stopping and
develop a general methodology for solving optimal exploration-stopping problems. By
fully delineating the connection between time preference and the pattern of dynamic
exploration, the current paper brought the theme of Zhong 2022 to completion. This
methodology has the power to drive research in at least two distinct areas.

The first is contest design. In Section 4.3, we illustrate how to solve the equilibria of
a contest given a specific reward structure. The same methodology can be used to solve a
general multi-agent exploration game, including, for instance, a cooperative exploration
setting. Ultimately, we hope that the current paper could be used to build a methodology
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for designing optimal contests to obtain general goals regarding the outcome and timing
of exploration.

The second is dynamic persuasion/information design. A series of recent papers ex-
plore the optimal design of information provision to persuade an agent to engage with the
principal for longer (see Knoepfle 2020, Hébert and Zhong 2022 and Koh and Sanguan-
moo 2024). The existing papers focus on very special preference structures, leaving the
general insight eluding. We hope that the current paper can be used to build a method-
ology that fully illuminates information provision in principal-agent settings.
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A Proof of Theorem 1

Necessity of Equation (2): For every admissible strategy (⟨µt⟩, τ) ∈ M, the variation
constraint (1) implies that H(µt)−χ · t is a supermartingale. Then, applying the optional
stopping theorem to H(µt) − χ · t w.r.t. stopping time min{t,τ} yields an accounting in-
equality:

E

[
H(µmin{t,τ})−H(µ0)

∣∣∣F0

]
≤ χ ·E [min {t,τ}] . (27)

Let f be the joint probability measure of µτ and τ , Equation (27) implies

Et<τ [H(µt)−H(µ0)] +Et≥τ [H(µτ )−H(µ0)] ≤ χ ·E [min {t,τ}]
=⇒H(E[µt |t < τ])P (t < τ) +Et≥τ [H(µτ )]−H(µ0) ≤ χ ·E [min {t,τ}] (28)

⇐⇒H


∫
τ>t

µf (dµ,dτ)∫
τ>t

f (dµ,dτ)

∫
τ>t

∫
S
f (dµ,dτ) +

∫
τ≤t

∫
S
H(µ)f (dµ,dτ)−H(µ0) (29)

≤ χ ·
∫

min {t,τ}f (dµ,dτ),

⇐⇒H

(∫
s>t

µf (dµ,ds)
)

+
∫
τ≤t

H(µ)f (dµ,dτ)−H(µ0) ≤ χ ·
∫

min {t,τ}f (dµ,dτ).
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The second inequality is from H being convex. The third inequality is from the optional
stopping theorem and ⟨µt⟩ being a martingale. The last inequality is from H being HD-1.

Sufficiency of Equation (2): We have shown that Equation (2) is a necessary condition
for f ∈ F . In what follows, we prove Theorem 1 by proving a slightly stronger suffi-
ciency result. Let M̃ denote the collection of admissible processes and stopping times
corresponding to T = R+. Define

F̃ =
{
f ∈ ∆(S × T )

∣∣∣∃(⟨µt, τ⟩) ∈ M̃ s.t. f ∼ (µτ , τ)
}
.

M̃ extends the definition of the martingale and stopping time from T to R+. F̃ is the
subset of embeddable distributions supported on S × T . Note that F̃ ⊂ F since any pair
(⟨µt⟩, τ) ⊂ M̃ such that supp(τ) ⊂ T has projection (⟨µt⟩t∈T , τ) ∈ M. In what follows, we
prove Theorem 1 by showing Equation (2) is a sufficient condition for f ∈ F̃ .16

For each n, discretize R+ to a finite grid t ∈ Tn =
{
t1 = 0, . . . , tni , . . . , t

n
n

}
. The sequence

of the grids (Tn) satisfies limn→∞maxi
{
tni − t

n
i−1

}
→ 0 and limn→∞ tnn →∞. Let f n

i = f (τ ∈
(tni−1, t

n
i ]) and fn,i(ν) = f (ν|τ ∈ (tni−1, t

n
i ]) for all i < n. Let f n

n = f (τ ∈ (tnn−1,∞) and

fn,n(ν) =
f (ν

∣∣∣τ ∈ (tnn−1, t
n
n]) + δν=Ef [ν|τ>tnn]f (τ > tnn)

f n
n

.

In words, the discretized distribution f n merges f within each interval (tni−1, t
n
i ] and as-

signs the merged mass to the right end of the interval tni . As a result, this operation only
relaxes the constraints specified by Equation (2) for any t ≤ tnn−1. For the last interval
(tnn−1, t

n
n], it follows that
n∑
i=1

f n
i Efn,i [H(ν)]−H(µ0) =

∫ tnn

0

∫
S
H(ν)df (ν,τ) + f (τ > tnn)H(Ef [ν|τ > tnn])−H(µ0)

≤χ ·
∫

min {τ, tnn}f (dµ,dτ)

≤χ ·
∫  n∑

i=1

1τ∈(tni−1,t
n
i ]t

n
i + 1τ≥tnn t

n
n

f (dµ,dτ) = χ ·
n∑
i=1

tni f
n
i

The first inequality is from Equation (2). The second inequality is from relaxing τ to the
closest larger ti . Then, f n satisfies the conditions of Lemma 4; hence there exists a process
(⟨µnt ⟩, τn) ∈ M̃ that satisfies (µnτn , τ

n) ∼ f n.
Since f diminishes at infinity, the sequence of (⟨µnt ⟩, τn) satisfies the conditions of

Lemma 6; hence, a limit point exists under the weak topology and (µnτn , τ
n)

d−→ (µτ , τ).
By construction, (µnτn , τ

n) ∼ f n w−→ f ; hence, (µτ , τ) ∼ f . Q.E.D.

16 Note that when f ∈ ∆(S × T ) satisfies Equation (2) for all t ∈ T , Equation (2) is automatically satisfied
for all t ∈R+, which will be taken as given in the subsequent analysis.
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Lemma 4. f ∈ ∆(S ×N) has discrete and finite support on the time dimension and f satisfies
Equation (2) for all t ∈N; then, f ∈ F̃ .

Proof. Let the support of f on the time dimension be {ti}ni=1. We prove by induction on n.
When n = 1, the lemma is trivially true. Now, we assume by induction that the statement
is proved for n = k − 1.

For notational simplicity, let f i = Ef

[
1t=ti

]
and fi(ν) = f (ν,ti )

f i . Let δti = ti − ti−1. Equa-
tion (2) implies:

k∑
1

f i
Efi [H(ν)]−H(µ0) ≤

k∑
1

 k∑
j=i

f j

 Iδti ;
Now, apply Lemma 5 to construction a process that implements fk and scale time by
max

{
δtk ,

Eπ[H(ν)−H(µ)]
I

}
. Then, the process ⟨µt⟩ is defined for t ∈ [0,max

{
δtk ,

Eπ[H(ν)−H(µ)]
I

}
]

and satisfies E
[dH(µt)

dt

∣∣∣Ft] = I .

Case 1: δtk ≤
Eπ[H(ν)−H(µ)]

I , i.e., the time it takes to implement fk from a degenerate
starting state is longer than the kth period. Then, by construction,

E

[
E

[
H(µEπ[H(ν)−H(µ)]

I
)−H(µEπ[H(ν)−H(µ)]

I −δtk
)
] ∣∣∣∣FEπ[H(ν)−H(µ)]

I −δtk

]
= Iδtk .

Let π̃ be the distribution of µEπ[H(ν)−H(µ)]
I −δtk

. Therefore, we obtain a martingale process

that starts with interim state distribution π̃ and implements fk within the kth period.
Case 2: δtk >

Eπ[H(ν)−H(µ)]
I . Then, let π̃ = δµ=Efk

[ν].
Note that by the construction of π̃:

Efk [H(ν)]−Eπ̃[H(ν)] ≥ Iδtk (30)

Let f̃ k−1 = f k−1 + f k and

f̃k−1(ν) =
f k−1 · fk−1(ν) + f k · π̃(ν)

f k−1 + f k
.

In words, we redefine f̃k−1 as the total measure of fk−1 and “fk pushed back in time by tk
periods, following the trajectories specified by ⟨µt⟩”. Let f̃ be otherwise defined identically
to f at other times. Then:

k−1∑
1

f̃ i
Ef̃i

[H(ν)]−H(µ0) =
k−1∑

1

f i
Efi [H(ν)] + f k

Eπ̃[H(ν)]−H(µ0)

=
k∑
1

f i
Efi [H(ν)]−H(µ0) + f k

Eπ̃[H(ν)]− f k
Ef k [H(ν)]

≤
k∑
1

 k∑
j=i

f j

 Iδti − f kIδtk =
k−1∑

1

k−1∑
j=i

f̃ j

 Iδti .
The third equality is from Equations (2) and (30). Therefore, we verify Equation (2) for f̃
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for k − 1. ∀i < k − 1,
i∑

j=1

f̃ j
Ef̃j

[H(ν)] +H


∑k−1

j=i+1 f̃
j
Ef̃j

[ν]∑k−1
j=i+1 f̃

j


 k−1∑
j=i+1

f̃ j

−H(µ0)

=
i∑

j=1

f j
Efj [H(ν)] +H


∑k

j=i+1 f
j
Efj [ν]∑k

j=i+1 f
j


 k∑
j=i+1

f j

−H(µ0)

≤
i∑

j=1

 k∑
ℓ=j

f ℓ

 Iδtj =
i∑

j=1

k−1∑
ℓ=j

f̃ ℓ

 Iδtj .
The inequality is from Equation (2) applied at i < k − 1.

By induction, f̃ is implementable by appending ⟨mut⟩ to ⟨µkt ⟩ on interval [tk−1, tk] con-
ditional on an event such that µktk−1

∼ f kπ̃. The stopping time τk is tk on the event and τk−1

otherwise. The filtration of ⟨µkt ⟩ within [tk−1, tk] is then expanded by the natural filtration
of ⟨µt⟩ and the (binary) stopping event. Q.E.D.

Lemma 5 (Zhong 2022, Lemma S.1). ∀π ∈ ∆(S), let µ = Eπ[ν]. H ∈ C(S) is strictly convex.
There exists a probability space (Ω,F ,P) and stochastic process ⟨µt⟩t∈[0,1] s.t.

1. ⟨µt⟩ is a martingale;

2. µ0 = µ and µ1 ∼ π;

3. ∀t1 < t2 ∈ [0,1], E
[
H(µt2)−H(µt1)

∣∣∣Ft1] = (t2 − t1)Eπ [H(ν)−H(µ)].

Lemma 6.
{
(⟨µnt ⟩, τn)

}
⊂ M̃ satisfies: ∀ε > 0, ∃t > 0 s.t. ∀n, P(τn ≤ t) ≥ 1 − ε. Then, there

exists (⟨µt⟩, τ) ∈ M̃ s.t. (⟨µnt ⟩, τ)
w−→ (⟨µt⟩, τ) and (µnτn , τ

n)
d−→ (µτ , τ).

Proof. ∀
{
(⟨µnt ⟩, τn)

}
⊂ M̃, it is wlog to assume that µnt is constant for t ≥ τn per the op-

tional stopping theorem. ∀η > 0, define a delayed stopping time τnη = τn + η. Define
process znηt = 0 if τnη > t and znηt = ±1, with equal probability if τnη ≤ t. Then, ⟨µnt , znηt⟩ is
a martingale process in the space S × [−1,1]. Let P n be the joint probability measure of
⟨µnt , znηt⟩ on the Skorokhod space D∞.

Next, we prove that the collection {P n} is tight. It is sufficient to check tightness for
each marginal distribution. It’s trivial that (znηt) is tight since the process is bounded and
the cadlag modulus is zero. It is trivial that (⟨µnt ⟩) is uniformly bounded in S. Next, we
verify the Aldou’s tightness criterion for (⟨µnt ⟩). Since H is strictly convex, ∀ε,δ > 0,

P

[
|µnt+δ −µ

n
t | ≥ ε

∣∣∣∣Ft] ≤ P

[
H(µnt+δ)−H(µnt )−∇H(µnt )(µnt+δ −µ

n
t ) ≥ ξ

∣∣∣∣Ft] ,
where ξ = min

µ,ν∈S,|ν−µ|≥ε
(H(ν)−H(µ)−∇H(µ)(ν −µ)) > 0. The variation constraint implies:

P

[
H(µnt+δ)−H(µnt )−∇H(µnt )(µnt+δ −µ

n
t ) ≥ ξ

∣∣∣∣Ft] · ξ +P

[
H(µnt+δ)−H(µnt )−∇H(µnt )(µnt+δ −µ

n
t ) ≤ ξ

∣∣∣∣Ft] · 0
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≤E
[
H(µnt+δ)−H(µnt )

∣∣∣Ft] ≤ χ · δ.
Therefore,

P

[
|µnt+δ −µ

n
t | ≥ ε

∣∣∣∣Ft] ≤ χ · δ
ξ

δ→0−−−−→ 0.

Aldou’s theorem implies that
{
⟨µnt ⟩

}
is a tight collection of measures on D∞ (Theorem

16.9 and 16.10 of Billingsley 2013). By Prokhorov’s theorem, there exists weak limit of
(P n) when n → ∞ under the weak topology, denoted by ⟨µt, zηt⟩. By Proposition IX.1.1
of Jacod and Shiryaev 2013, since (⟨µnt ⟩, znηt) are uniformly bounded, ⟨µt, zηt⟩ is a cadlag
martingale. Let τη = inf{t||zηt | = 1}. 17

Next, we prove that ⟨µt⟩ satisfies Equation (1). ∀A ∈ F , define dt(A) = supω,ω′∈A |µt(ω)−
µt(ω′)|. ∀ϵ > 0, let δ be the continuity parameter of H . ∀A ∈ Ft s.t. dt(A) ≤ 1

2δ, ∀µ ∈
{
µt(A)

}
,

∀t′ > t, then:

E [H(µt′ )|A] ≤ lim
n→∞

E

[
H(µnt′ )|A

]
≤ lim

n→∞
(E [H(µnt )|A] + (t′ − t)χ)

≤E [H(µt)|A] + 2ε+ (t′ − t)χ
The first inequality is Fatou’s lemma. The second inequality is Equation (1) applied to
⟨µnt ⟩ at t. The last inequality is from the continuity of H and dt(A) ≤ 1

2δ. Since ε can be
chosen arbitrarily small, this implies E [H(µt′ )−H(µt)|Ft] ≤ (t′ − t)χ.

Next, by Skorokhod representation theorem, there exists probability space (Ω,F ,P )
s.t. (⟨µnt ⟩, τnη ) converges a.s. to (⟨µt⟩, τη). ∀ω s.t. (µnt (ω), τnη (ω))→ (µt(ω), τη(ω)). Pick ε < η.
∃N s.t. ∀n > N , |τnη (ω) − τη(ω)| < ε =⇒ ∀τ s.t. |τ − τη(ω)| < ε, τ > τn(ω). Therefore,
µnt (ω) are constant in (τη(ω) − ε,τη(ω) + ε). Then d(µnt (ω),µt(ω))→ 0 implies µnτn(ω)(ω) =

µnτη(ω)(ω)→ µτη(ω)(ω). This suggests that:
(
µnτnη , τ

n
η

)
a.s.−−→

(
µτη , τη

)
.

Define τ = τη−η. Note that the analysis in last paragraph implies that with probability
one, µt(ω) is constant within (τη(ω)−η,+∞). Since ⟨µt⟩ is cadlag, µt(ω) is constant within
[τη(ω) − η,∞) = [τ(ω),∞). Therefore, ⟨µt⟩ is a martingale w.r.t. the natural filtration of

(⟨µt⟩, τ); hence, (⟨µt⟩, τ) ∈ M̃. Since µnτn = µnτnη and µτ = µτη ,
(
µnτn , τ

n
) a.s.−−→ (µτ , τ), Q.E.D.

17 Note that the Skorokhod metric between znηt(ω) and znηt(ω
′) is equivalent to min{1, |τnη (ω) − τnη (ω′)|}.

Then the weak convergence of (znηt) is equivalent to the weak convergence of (τnη ). Therefore, since (τnη ) is a
tight collection of measures on R+, the limit τη is supported on R+.
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B Proofs in Section 3

B.1 Proof of Lemma 1

We note in Lemma 8 that F is closed.18 If T is bounded, then the statement is trivial
as ∆(S × T ) is tight. We focus on the case where T is unbounded. Then, there exists an
increasing sequence (tn) ⊂ T such that tn→∞. Define

ûn(µ) := sup
h∈∆(S×T∩[tn,∞)),

Eh[ν]=µ

Eh [U ] .

Claim. ûn is upper semicontinuous. Moreover, the maximum is attained.

Proof. We begin with defining un(µ) := supt≥tnU (µ,t). Since limt→∞ supµU (µ,t) = 0,
un(µ) must be attained by finite t, denote this mapping by t = t̂(µ). Moreover, ∀µm → µ

such that un(µm) converges, if t̂(µm) is unbounded, then un(µm)→ 0 ≤ un(µ). If t(µm) is
bounded, then wlog we can pick t̂(µm) to be converging. Then, limun(µm) = U (limµm, lim t̂(µm)) ≤
un(µ). Therefore, un(µ) is upper semicontinuous.

Observe that ûn(µ) is the upper concave envelope of un(µ). By Caratheodory’s theorem,
∀µ there exists a finite support probability measure (pi ,µi) that has mean µ and attains
ûn(µ). Therefore, h = (pi ,µi , t̂(µi)) attains ûn(µ). Denote hn(µ) a mapping from µ to a
maximizer that attains ûn(µ) (invoking the axoim of choice).

Next, we prove upper semicontinuity. Suppose for the purpose of contradiction that
µm→ µ but lim ûn(µm) ≥ ûn(µ) + ϵ for some ϵ > 0. Then, since U (µ,t)

u−−−−→
t→∞

0, there exists

t̄ s.t. U (µ,t) < ϵ/2 for t > t̄. This implies that ∀m, ∃hm ∈ ∆(S × T ∩ [tn, t̄]) that attains
ûn(µm)− ϵ/2. Note that the collection of hm is tight, hence Elimhm[U ] ≥ lim ûn(µm)− ϵ/2 >

ûn(µ). This contradicts the definition of ûn(µ). Q.E.D.

Next, define

Ûn(µ,t) =

U (µ,t) if t < tn

ûn(µ) if t = tn

for µ ∈ S, t ∈ T&t ≤ tn. Obviously, Ûn ≥ U . Since U is bounded and continuous, Ûn is
bounded and upper semicontinous. This implies that

∫
Ûn(µ,t)f (dµ,dt) is upper semi-

continuous. Therefore,

sup
f ∈F

Ef [Ûn]

has a solution fn ∈ ∆(S × T ∩ [0, tn]).

18 The proof is straightforward as F is defined by a collection of weak inequality constraints; hence, it is
relegated to the online appendix.
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Consider the collection of {fn}. Suppose it is tight, then there exists f ∈ F s.t. fn→ f

and Ef [U ] = limEfn[Ûn] ≥ Equation (P). Therefore, f solves Equation (P).
Now consider the remaining case that {fn} is not tight, i.e., ∃ϵ > 0 s.t. ∀t, ∃n s.t.

fn(S × T ∩ [t,∞)]) > ϵ. Since t is arbitrary, pick t′ = supH−infH
χϵ . Then fn(S × T ∩ [t′,∞)]) > ϵ

implies tn ≥ t′. Define

f :=

fn if t < tn

hn(Efn[µ|t ≥ tn]) if t ≥ tn.

By definition, Ef [U ] = Efn[Ûn|t < tn] + ûn(Efn[µ|t ≥ tn]) ≥ Efn[Ûn] ≥Equation (P). We
verify that f ∈ F . Equation (2) is obviously satisfied for t < tn. For t ≥ tn,∫

s≤t
χ(1−F(s))ds ≥ χ · tn · ϵ ≥ supH − infH.

The RHS is an obvious upper bound for the LHS of Equation (2). Therefore, f solves
Equation (P). Q.E.D.

B.2 Proof of Lemma 2

Lemma 2 is trivially true when T is finite. We provide the proof when T is a compact
interval. To prove Lemma 2, we invoke Theorem 1, chapter 8.6 of Luenberger 1997. Let
∆C
µ0

:=
{
f ∈ ∆µ0

|G(f )(t) ∈UC(T ◦)
}
, termed the time-continuous subset of ∆µ0

.19 We verify
all conditions of the cited theorem, applied to UC(T ◦) and its dual space B(T ◦). First, the
objective functional

∫
U (µ,τ)f (dµ,dτ) is a real-valued linear and continuous functional

of f . ∆C
µ0

is a convex subset of the vector space of all probability measures on (S × T ).
Next, we verify that G is a concave mapping of ∆C

µ0
into UC(T ◦). ∀f1, f2 ∈ ∆C

µ0
, ∀α ∈

[0,1], ∀t ∈ T ◦,

−H
(∫

τ>t
µ (αf1 + (1−α)f2) (dµ,dτ)

)
=−H

(
α

∫
τ>t

µf1(dµ,dτ) + (1−α)
∫
τ>t

µf2(dµ,dτ)
)

≥−αH
(∫

τ>t
µf1(dµ,dτ)

)
− (1−α)H

(∫
τ>t

µf2(dµ,dτ)
)
.

The inequality is from the convexity of H . This verifies the concavity of the only non-
linear term in G(·)(t). Hence, G is concave.

Next, we verify that there exists f ∈ ∆C
µ0

s.t. G(f )(·) is an interior point of the positive
cone. Let Let f ∼ 1µ=µ0

×U (T ) × α + 1µ=µ0,t=supT × (1 − α), where 0 < α < 1 and U (T ) is
the uniform distribution on T . In words, f stops uniformly on T at µ0 with probability α

and stops on supT at µ0 with probability 1−α. By definition, f ∈ ∆C
µ0

. ∀t ∈ T ◦,

G(f )(t) ≥ 1
t

(χ · t · (1−α)) = (1−α)χ.

19UC(X) denotes all uniformly continuous fuctions on X. Note that G(f )(t) is not defined at 0 and supT .
We slightly abuse notation and define it as its continuous extension (which always exists).
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Therefore, ∀h ∈ UC(T ) s.t. ||h −G(f )|| < (1 − α)χ, h ≥ 0; hence, G(f ) is an interior point.
Then, the cited theorem implies

sup
f ∈∆C

µ0 ,G(f )≥0

∫
U (µ,τ)f (dµ,dτ) = min

ζ∈B(T ◦)
sup
f ∈∆C

µ0

(∫
U (µ,τ)f (dµ,dτ) +

∫
G(f )(t)dζ(t)

)
, (31)

where there exists ζ∗ ∈ B(T ◦) achieving the RHS of (31). Note that ζ ∈ B(T ◦) equivalently
defines λ ∈ L s.t. the radon-nikodym derivative dζ

dλ = t. Therefore, (31) is equivalent to

sup
f ∈∆C

µ0 ,G(f )≥0

∫
U (µ,τ)f (dµ,dτ) = min

λ∈L
sup
f ∈∆C

µ0

L(f ,λ), (32)

where there exists λ∗ ∈ L achieving the minimum on the RHS. If f ∗ achieves the maximum
on the LHS, then 

f ∗ ∈ arg max
f ∈∆C

µ0

L(f ,λ∗);∫
t∈T ◦

G(f ∗)(t)λ∗(t)tdt = 0.
(33)

∀f ∈ ∆µ0
, ∀ϵ > 0, Lemma 7 implies that there exists f ′ ∈ ∆C

µ0
s.t. L(f ′,λ) ≥ L(f ,λ) − ϵ

for all λ. Therefore, Equations (32) and (33) still hold when ∆C
µ0

is replaced by ∆µ0
, which

establishes strong duality. Q.E.D.

Lemma 7. Suppose T is a compacty interval, ∀f ∈ ∆µ0
, ∀ϵ > 0, there exists f̂ ∈ ∆C

µ0
s.t.

dlp(f̂ , f ) ≤ ϵ and G(f̂ ) ≥ G(f )− ϵ.20

Proof. ∀f ∈ ∆µ0
, G(f )(t) has bounded variation and only jumps down. Therefore, G(f )(t)

can be decomposed into g(t) +h(t), where g is bounded and continuous and h is bounded
and decreasing. Define the “delayed” measure

f s(µ,t) :=


0 t < s

f (µ,t − s) t ∈ [s,sup(T ))

f (µ, [t − s,sup(T )]) t = sup(T )

In words, f s delay the distribution of f by s. By definition, dlp(f s, f )
s→0−−−−→ 0. Pick δ > 0

s.t. |U (·, t)−U (·, t − s)| < ϵ, dlp(f s, f ) < ϵ, and |g(t)− g(t + s)| < 1
2ϵ when s < δ. Then,

G(f s)(t) ≥G(f )(t − s)
=g(t − s) + h(t − s)
≥g(t) + h(t)ϵ

=G(f )(t)− ϵ.
Let f̂ be the uniform randomization of f s, for s ∈ [1

2δ,δ]. Then, dlp(f̂ , f ) ≤ ϵ. Since G is a
concave operator of f , G(f̂ )(t) ≥ G(f )(t)− ϵ.

20 dlp is the Levy-Prokhorov metric.
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Next, we prove the uniform continuity of G(f̂ ). Note that ∀t < t′ < t + 1
2δ,

f̂ ((t, t′]) =
2
δ

∫ δ

s= 1
2δ

(F(t′ − s)−F(t − s))ds

≤2
δ

∫
(t− 1

2δ,t
′− 1

2δ]∪(t−δ,t′−δ]
F(s)ds

≤4|t − t′ |
δ

.

When t ∈ [0, 1
2δ], by construction, G(f̂ )(t) ≡ χ. ∀ϵ > 0, let γ be the continuity parame-

ter of H corresponding to ϵ. When t, t′ > 1
2δ and |t − t′ | ≤ δγ/4,

|G(f̂ )(t)t −G(f̂ )(t′)t′ | ≤ |t − t′ |χ+ |t − t′ |max |H |+ ϵ

Therefore, G(f̂ )(t) · t is uniformly continuous for t ≥ 1
2δ. Since 1/t is a uniformly continu-

ous function when t ≥ 1
2δ, so is G(f̂ )(t). To sum up, G(f̂ ) ∈UC(T ). Q.E.D.

B.3 Proof of Theorem 2

Sufficiency: Suppose for the purpose of contradiction that (f ,λ,a) satisfies Equations (9)
and (10) and the complimentary slackness condition, but f is suboptimal in (P). Then,
there exists g s.t. L(f ,λ) < L(g,λ). Then, since L is concave, ∀α ∈ (0,1),

L(αg + (1−α)f ,λ)−L(f ,λ)
α

≥ L(g,λ)−L(f ,λ)

=⇒ lim
α→0

L(αg + (1−α)f ,λ)−L(f ,λ)
α

> 0

⇐⇒
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(
χ ·

∫
min {t,τ} (g − f )(dµ,dτ)−

∫
τ≤t

H(µ)(g − f )(dµ,dτ)
)

dλ(t)

− lim
α→0

∫
t∈T ◦

H
(∫

τ>t
µ(αg + (1−α)f )(dµ,dt)

)
−H

(∫
τ>t

µf (dµ,dt)
)

α︸                                                                ︷︷                                                                ︸
≥y·

∫
τ>t

µ(g−f )(dµ,dτ), ∀y∈∇H(µ̂t), by convexity of H .

dλ(t) > 0

=⇒
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(
χ ·

∫
min {t,τ} (g − f )(dµ,dτ)−

∫
τ≤t

H(µ)(g − f )(dµ,dτ)
)

dλ(t)

−
∫
t∈T ◦
∇H(µ̂t) ·

∫
τ>t

µ(g − f )(dµ,dτ)dλ(t) > 0

⇐⇒
∫

lf ,λ(µ,τ)(g − f )(dµ,dτ) > 0

=⇒
∫

lf ,λ(µ,τ)g(dµ,dτ) > a ·µ0.

The last line contradicts lf ,λ(µ,τ) ≤ a ·µ. Note that the selection of ∇H(·) is arbitrary.
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Necessity: Suppose f ∈ argmaxf ∈∆µ0
L(f ,λ). ∀µ, when τ ≥ t̄, select ∇H(0) s.t. ∇H(0)·µ =

H(µ). Since lf ,λ(µ,τ) ∈ L∞(S × T ◦),

l̂(µ) = sup
π∈∆(S),Eπ[µ]=µ0

Eπ[sup
τ∈T ◦

lf ,λ(µ,τ)]

is a well-defined real-valued concave function on S. Let a ·µ be the tangent hyperplane of
l̂ at µ0. Evidently, lf ,λ(µ,τ) ≤ a ·µ.

Next, we prove that
∫
lf ,λ(µ,τ)f (dµ,dτ)) = a · µ0. Suppose for the purpose of contra-

diction that
∫
lf ,λ(µ,τ)f (dµ,dτ) < a · µ0. Then, since lf ,λ(µ,τ) ≤ a · µ, there exists an open

set and ϵ > 0 s.t. infO > 0 and
∫
O

(a ·µ− lf ,λ(µ,τ))f (dµ,dτ) > ϵ. Let (µ,τ) = Ef [(µ′, τ ′)|O].21

Then, Ef [lf ,λ(µ′, τ ′)|O] < a ·µ− ϵ.
By the definition of l̂, there exists a finite support distribution π ∈ ∆(S) s.t. Eπ[supτ∈T ◦ lf ,λ(µ,τ)] >

l̂(µ)−ε/4. For each µ′ in the support of π, there exists τ ′ s.t. lf ,λ(µ′, τ ′) > supτ∈T ◦ lf ,λ(µ′, τ)−
1
4ϵ. We slightly abuse notation and let π denote the distribution of such (µ′, τ ′) pairs.
Therefore, Eπ[lf ,λ(µ′, τ ′)] > a ·µ− ϵ

2 .
Define g = f + f (O) · (π − f |O). Then,

lim
α→0

L(αg + (1−α)f ,λ)−L(f ,λ)
α

=
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(
χ ·

∫
min {t,τ} (g − f )(dµ,dτ)−

∫
τ≤t

H(µ)(g − f )(dµ,dτ)
)

dλ(t)

− lim
α→0

∫
t∈T ◦

H
(∫

τ>t
µ(αg + (1−α)f )(dµ,dτ)

)
−H

(∫
τ>t

µf (dµ,dτ)
)

α
dλ(t)

=
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(
χ ·

∫
min {t,τ} (g − f )(dµ,dτ)−

∫
τ≤t

H(µ)(g − f )(dµ,dτ)
)

dλ(t)

− lim
α→0

∫
t<t̄

H
(∫

τ>t
µ(αg + (1−α)f )(dµ,dt)

)
−H

(∫
τ>t

µf (dµ,dt)
)

α
dλ(t)

− lim
α→0

∫
t≥t̄

H

(∫
τ>t

µg(dµ,dτ)
)

dλ(t)

≥
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(
χ ·

∫
min {t,τ} (g − f )(dµ,dτ)−

∫
τ≤t

H(µ)(g − f )(dµ,dτ)
)

dλ(t)

−
∫
t<t̄
∇H(µ̂t) ·

∫
τ>t

µ(g − f )(dµ,dτ)dλ(t)−
∫
t≥t̄

∫
τ>t

H(µ)g(dµ,dτ)dλ(t)

=
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(
χ ·

∫
min {t,τ} (g − f )(dµ,dτ)−

∫
τ≤t

H(µ)(g − f )(dµ,dτ)
)

dλ(t)

−
∫ (∫

t<min{τ,t̄}
∇H(µ̂t) ·µdλ(t) +

∫
t∈[t̄,τ)

∇H(0) ·µdλ(t)
)

(g − f )(dµ,dτ)

21 Wlog, O can be chosen that a ·µ = l̂(µ) since O can be arbitrarily close to the whole domain.
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=f (O) ·
∫

lf ,λ(µ,τ)(π − f |O)(dµ,dτ)

>f (O) ·
(
aµ− ϵ

2
− (a ·µ− ϵ)

)
> 0.

The last line contradicts f ∈ argmaxf ∈∆µ0
L(f ,λ). Q.E.D.

46



Online Appendix to Exploration and Stopping

Yuliy Sannikov Weijie Zhong

C Proofs in Section 3

C.1 Lemmas for Lemma 1

Lemma 8. F is closed under weak topology.

Proof. We prove by showing that F C is open. Since H is continuous on a compact set, it
is bounded. WLOG, let H be non-negative. Define

χt1,t2(t) =


0 when t > t2
t2 − t
t2 − t1

when t ∈ [t1, t2]

1 when t < t1

for any t1 < t2. Note that χt,t′ (τ) is bounded and continuous and 1τ≤t ≤ χt,t′ (τ) ≤ 1τ≤t′ .
∀f < F̂ , there exists t s.t.

H

(∫
τ>t

∫
S
µf (dµ,dτ)

)
+
∫
τ≤t

∫
S
H(µ)f (dµ,dτ)−H(µ0) > χ ·

∫
s≤t

(1−F(s))ds.

Since F is right-continuous in t. Therefore, ∃t′ > t,ε > 0 s.t.

H

(∫
τ>t

∫
S
µf (dµ,dτ)

)
+
∫
τ≤t

∫
S
H(µ)f (dµ,dτ)−H(µ0) ≥ χ ·

∫
s≤t′

(1−F(s))ds+ ε. (34)

Now, consider ∫
χt,t′ (τ)H(µ)f (dµ,dτ) +H

(∫
(1−χt,t′ (τ))µf (dµ,dτ)

)
=
∫

1τ≤tH(µ)f (dµ,dτ) +
∫

(χt,t′ (τ)− 1τ≤t)H(µ)f (dµ,dτ)

+H

(∫
1τ>tµf (dµ,dτ)−

∫
(χt,t′ (τ)− 1τ≤t)µf (dµ,dτ)

)
≥
∫

1τ≤tH(µ)f (dµ,dτ) +
∫

(χt,t′ (τ)− 1τ≤t)H(µ)f (dµ,dτ)

+H

(∫
1τ>tµf (dµ,dτ)

)
−H

(∫
(χt,t′ (τ)− 1τ≤t)µf (dµ,dτ)

)
1



≥
∫

1τ≤tH(µ)f (dµ,dτ) +H

(∫
1τ>tµf (dµ,dτ)

)
≥χ ·

∫
s≤t′

(1−F(s))ds+H(µ0) + ε.

The first inequality is from H being convex and HD1. The second inequality is from the
convexity of H . The last inequality is Equation (34). Since χt,t′ (τ)H(µ) and χt,t′ (τ)µ are
both bounded and continuous functions of (µ,τ), there exists an open ball O s.t. f ∈ O
and ∀f ′ ∈O,∫

χt,t′ (τ)H(µ)f ′(dµ,dτ) +H

(∫
(1−χt,t′ (τ))µf ′(dµ,dτ)

)
≥ χ ·

∫
s≤t′

(1−F′(s))ds+H(µ0) +
1
2
ε.

(35)

Now, consider∫
1τ≤t′H(µ)f ′(dµ,dτ) +H

(∫
1τ>t′µf

′(dµ,dτ)
)

=
∫

χt,t′ (τ)H(µ)f ′(dµ,dτ) +
∫

(1τ≤t′ −χt,t′ (τ))H(µ)f ′(dµ,dτ)

+H

(∫
(1−χt,t′ (τ))µf (dµ,dτ)−

∫
(1τ≤t′ −χt,t′ (τ))µf (dµ,dτ)

)
≥
∫

χt,t′ (τ)H(µ)f ′(dµ,dτ) +
∫

(1τ≤t′ −χt,t′ (τ))H(µ)f ′(dµ,dτ)

+H

(∫
(1−χt,t′ (τ))µf (dµ,dτ)

)
−H

(∫
(1τ≤t′ −χt,t′ (τ))µf (dµ,dτ)

)
≥
∫

χt,t′ (τ)H(µ)f ′(dµ,dτ) +H

(∫
(1−χt,t′ (τ))µf (dµ,dτ)

)
≥χ ·

∫
s≤t′

(1−F′(s))ds+H(µ0) +
1
2
ε.

The first inequality is from H being convex and HD1. The second inequality is from the
convexity of H . The last inequality is Equation (35). Therefore, f ′ ∈ F C ; hence, F is a
closed set. Q.E.D.

C.2 Proof of Proposition 1

We prove by showing that ∀f ∈ F , there exists f ′ ∈ F s.t. |supp(f ′(·, t))| ≤ n + 2 and∫
U (µ,τ)f ′(dµ,dτ) ≥

∫
U (µ,τ)f (dµ,dτ). ∀t ∈ T , consider the following optimization prob-

lem:

sup
f t∈∆(S)

∫
U (µ,t)f t(dµ) (36)

2



s.t.


Ef t [µ] =

∫
µf (dµ,t)

f (S,t)
;

Ef t [H(µ)] ≤

∫
H(µ)f (dµ,t)

f (S, t)
.

For a feasible f t, modify f by replacing f (·, t) with f t · f (S,t) and denote it by f ′. This
modification does not change any term in Equation (2) except that

∫
τ≤tH(µ)f ′(dµ,dτ)

gets weakly lower. Hence, the modified probability measure f ′ is still in F . Second, since
f (·, t)/f (S,t) is a feasible probability measure of Equation (36), if f t is the maximizer of
Equation (36), then Ef ′ [U ] ≥ Ef [U ].

A direct application of corollary 3.1 of Doval and Skreta 2022 implies that there exists
f t solving Equation (36) with |supp(f t)| ≤ n+ 2.1 Therefore, by replacing each f (·, t) with
the corresponding f t, we obtain f ′ with |suppf (·, t)| ≤ n+ 2 and Ef ′ [U ] ≥ Ef [U ].

Let f be the solution of Equation (P) (existence implied by Lemma 1), then the corre-
sponding f ′ satisfies the statement of Proposition 1 Q.E.D.

C.3 Proof of Proposition 2

Let t = supSupp(f ). Suppose for the purpose of contradiction that Λ(t) is not strictly
decreasing for t < t, then there exists an interval (t1, t2) s.t. Λ(t) = Λ on the interval.
∀t ∈ [0, t], define ξ(t) = maxµ(lf ,λ(µ,t) − a · µ), the gap in the (9). Therefore, Theorem 2
implies that ξ(t) ≤ 0 and ξ(t1) = ξ(t2) = 0. ∀t ∈ (t1, t2), µ ∈ S,

∂2

∂t2 (lf ,λ(µ,t)− a ·µ) = U ′′t (µ,t) > 0.

Therefore, since ξ(t) is the upper envelope of a collection of strictly convex functions,
ξ(t) is strictly convex on [t1, t2]; hence, ξ(t) < 0 on (t1, t2) and ξ(t−2 )′ > 0. ξ(t) < 0 on (t1, t2)
implies that f (µ, (t1, t2)) = 0; hence, (2) is strictly slack at t−2 . If t2 < t, then (2) must be
binding at t2. If t2 = t, then the DM can strictly improve f by reduce t2 if (2) is not binding
at t2. Therefore, since (2) is binding at t2, f puts a point mass at t2 that is different from
µ̂t2 . Let µ∗t2 be such a maximizer that attains ξ(t2). Consider

ξ(t2 + δt) ≥lf ,λ(µ∗t2 , t2 + δt)− a ·µ∗t2

=ξ(t2) +U (µ∗t2 , t2 + δt)−U (µ∗t2 , t2) +χ

∫
τ∈[t2,t2+δt)

Λ(τ)dτ

+
∫
τ∈[t2,t2+δt)

(H(µ∗t2)−∇H(µ̂τ ) ·µ∗t2)dλ(τ)

1 Doval and Skreta 2022 improved the bound derived by Zhong 2018 from 2(n+ 1) to a tight bound of
n+2.
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=ξ(t2) +U ′t (µ
∗
t2 , t2)δt +χΛ(t+

2 )δt + (Λ−Λ(t+
2 ))(H(µ∗t2)−∇H(µ̂t2) ·µ∗t2) + o(δt).

If Λ > Λ(t+
2 ), then since µ∗t2 , µ̂t2 and H is strictly convex, H(µ∗t2) − ∇H(µ̂t2) > 0; hence,

ξ(t + δt) > 0 for sufficiently small δt > 0. If Λ = Λ(t+
2 ), the last line above is weakly higher

than

ξ(t2) +U ′t (µ
∗
t2 , t2)δt +χΛδt + o(δt)

=ξ(t−2 )′δt + o(δt).

Therefore, ξ(t2 + δt) > 0 for sufficiently small δt > 0. Both case contradict ξ ≤ 0.
Since Λ(t) is strictly decreasing, the complementary slackness condition implies that

Equation (2) is binding all the time:∫
τ≤t

H(µ)f (dµ,dτ) +H

(∫
τ>t

µf (dµ,dτ)
)
−H(µ0) ≡ χ ·

∫
min {t,τ}f (dµ,dτ)

⇐⇒ E[H(µ̂t)]−H(µ0) ≡ χE[min(t,τ)].

Combine the equality with

E[H(µ̂t)]−H(µ0) ≤ E[H(µmin t,τ )−H(µ0)] ≤ χE[min(t,τ)]

=⇒H(µ̂t) ≡ E[H(µt)|τ > t].

Since H is strictly convex, µt |τ > t has to be degenerate and equal to µ̂t. Q.E.D.

C.4 Proof of Proposition 3

∀ embeddable f , Equation (1) at t→ supT implies that

Ef [H(µ)−H(µ0)] ≤ χEf [τ]

=⇒ Ef [v(µ)]−κEf [τ] ≤ Ef [v(µ)−κ/χ(H(µ)−H(µ0))] ≤ (15).

This proves sufficiency.
To prove necessity, it is sufficient to prove that Equation (15) is attainable. ∀π that is

feasible in Equation (15), define

f (µ,τ) = π(µ) · δ
τ=Eπ[H(µ)−H(µ0)]

χ
.

It is straightforward that f satisfies Equation (1) and attains expected utility Ef [v(µ) −
κτ] = Eπ[v(µ)−κ/χ (H(µ)−H(µ0))]. Q.E.D.
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C.5 Proof of Proposition 5

∀t ∈ [0, t], define ξ(t) = maxµ(lf ,λ(µ,t) − a · µ), the gap in the (9). Therefore, Theo-
rem 2 implies that ξ(t) ≤ 0 and ξ(t) = ξ(t) = 0. The envelope theorem implies ξ ′(t−) =
U ′(µ,t−) +χΛ(t) ≥ 0, where µ is the maximizer that attains ξ(t). Suppose for the purpose
of contradiction that t > J

−1 ◦ J(t). Then, ∃ϵ > 0 s.t. ∀µ ∈ S, ∀t > t − ϵ,

U ′t (µ,t) +χΛ(t) < −ϵ.

Regularity implies that µ̂t
f (τ>t) → µ∗ and Λ(t)−Λ(t)

t−t is bounded when t→ t
−. Therefore, there

exists δ ∈ (0,ϵ) s.t. ∀t ≥ t − δ,

Λ(t − δ)−Λ(t)
δ

(H(µ∗)−∇H(µ̂t) ·µ∗) <
1
2
ϵ.

Then, ∀t1, t2 ∈ (t − δ, t) and t1 < t2,

lf ,λ(µ∗, t2)− a ·µ∗

=(lf ,λ(µ∗, t1)− a ·µ∗) +
∫ t2

t1

U ′t (µ
∗, t) +χΛ(t)dt +

∫ t2

t1

(H(µ∗)−∇H(µ̂t) ·µ∗)dλ(t)

<− ϵ(t2 − t1) +
ϵδ

2(Λ(t − δ)−Λ(t))

∫ t2

t1

dλ(t)

→−ϵδ
2

when t2→ t, t1 = t − δ.

The analysis above implies that lf ,λ(µ∗, t) is bounded away from 0 when t → t
−, contra-

dicting (µ∗, t) ∈ Supp(f ). Q.E.D.

C.6 Proof of Lemma 3

∀ admissible strategy (⟨µt⟩,⟨χt⟩, τ), let χ̂t := E[χt |t < τ]. Then,

E

[
H(µmin{τ,t})−H(µ0)

]
≤E

[∫ min{t,τ}

0
χsds

]
=E

[∫ min{t,τ}

0
E[χs|s < τ]ds

]
=E

[∫ min{t,τ}

0
χ̂sds

]
.

Let f ∼ (µτ , τ), the inequality is equivalent to∫
τ≤t

H(µ)f (dµ,dτ) +H

(∫
τ>t

µf (dµ,dτ)
)
−H(µ0) ≤

∫
s≤t

χ̂s(1−F(s))ds.
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Meanwhile,

E

[
U (µτ , τ)−

∫
t≤τ

ct(χt)dt
]

= E [U (µτ , τ)]−E
[∫

t≤τ
E[ct(χt)|t < τ]dt

]
≤ E [U (µτ , τ)]−E

[∫
t≤τ

ct(E[χt |t < τ])dt
]

=
∫

U (µ,τ)f (dµ,dτ)−
∫

ct(χ̂t)(1−F(t))dt.

Therefore, (P1)≥(C1). As is established by Corollary 1.1, for any feasible (f ,χ) in (P1),
there exists an admissible strategy of (C1) implementing f and achiving the same payoff.
Therefore, (P1)=(C1). Q.E.D.

C.7 Proof of Lemma 2-A

Defined mapping G:

G(f ,η)(t) =
1
t

∫
s≤t

ηsds −H(
∫
τ>t

µf (dµ,dτ))−
∫
τ≤t

H(µ)f (dµ,dτ) +H(µ0)

.
Rewrite the Lagrangian by replacing χt with ηt

1−F(t) :

L̃(f ,η,λ) :=
∫

U (µ,τ)f (dµ,dτ)−
∫

ct

(
ηt

1−F(t)

)
(1−F(t))dt +

∫
t ·G(f ,η)(t)dλ(t),

with the convention that 0
0 = 0. Consider the space

Ω =

(f ,η) ∈ ∆µ0
×L∞(T )

∣∣∣∣∣∣ η(t)
1−F(t)

∈ L∞(T )

 .
Ω is a subset of the vector space of ∆(S ×T )×L∞(T ), endowed with the product topology.
Let ΩC be the time-continuous subspace of Ω s.t. G(f ,η)(t) ∈UC(T ◦). We verify that ΩC

is convex: ∀(f1,η1), (f2,η2) ∈ΩC , ∀α ∈ (0,1),∥∥∥∥∥ αη1 + (1−α)η2

1−αF1 − (1−α)F2

∥∥∥∥∥ ≤max
{∥∥∥∥∥ η1

1−F1

∥∥∥∥∥ ,∥∥∥∥∥ η2

1−F2

∥∥∥∥∥} .
Therefore, α(f1,η1)+(1−α)(f2,η2) ∈ΩC ; hence, ΩC is convex. By defintion, G is a concave
mapping of ΩC into UC(T ◦).

Next, we verify that there exists (f ,η) ∈ ΩC s.t. G(f ,η)(·) is an interior point of the
positive cone. Let f = δµ=µ0

·U (T ), where U (T ) is the uniform randomization and ηt =
η · (1−F(t)) for η > 0. Therefore, (f ,η) ∈ΩC . ∀t ∈ T ◦,

G(f ,η)(t) =
η

t

∫
s≤t

(1−F(s))ds > 0;
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hence, G(f ,η) is an interior point.
Next, we verify that the objective∫

U (µ,τ)f (dµ,dτ)−
∫

ct

(
ηt

1−F(t)

)
(1−F(t))dt

is bounded , concave and continuous in (f ,η). Since η
1−F is bounded, the objective function

is obviously bounded. Note that the function ct(x/y)/y has positive semi-definite Hessian
matrix; hence,

∫
ct

(
ηt

1−F(t)

)
(1 − F(t)) is a convex functional. It is obvious that

∫
Udf is

continuous in f . Since ηt
1−F(t) is (uniformly) bounded, it is continuous in (f ,η).

The cited theorem implies

sup
(f ,η)∈ΩC ,G(f ,η)≥0

∫
U (µ,τ)f (dµ,dτ)−

∫
ct

(
ηt

1−F(t)

)
(1−F(t))dt = min

λ∈L
sup

(f ,η)∈ΩC

L̃(f ,η,λ)

⇐⇒ sup
f ∈∆C

µ0 ,χ∈L∞,G(f ,χ/(1−F))≥0

∫
U (µ,τ)f (dµ,dτ)−

∫
ct(χt)(1−F(t))dt = min

λ∈L,f ∈∆C
µ0 ,χ∈L∞

L(f ,χ,λ),

where there exists λ∗ ∈ L achieving the minimum on the RHS. Note that the argument of
Lemma 7 applies here as well; hence, it is wlog to replace ∆C

µ0
with ∆µ0

:

sup
f ∈∆µ0 ,χ∈L

∞,G(f ,χ/(1−F))≥0

∫
U (µ,τ)f (dµ,dτ)−

∫
ct(χt)(1−F(t))dt = min

λ∈L,f ∈∆µ0 ,χ∈L
∞
L(f ,χ,λ)

The LHS is exactly Equation (P1). Q.E.D.

C.8 Proof of Theorem 2-A

Sufficiency: Suppose for the purpose of contradiction that (f ,χ,a,λ) solves Equa-
tions (17) and (18) but (f ,χ) does not solve Equation (P1). In other words, there exists
admissible (g,φ) s.t. L(g,φ,λ) > L(f ,χ,λ). Since L̃ is concave, ∀α ∈ (0,1),

lim
α→0

L(αg + (1−α)f , αφ(1−G)+(1−α)χ(1−F)
1−αG−(1−α)F ,λ)−L(f ,χ,λ)

α
> 0

=⇒
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(∫
τ≤t

(φτ(1−G(τ))−χτ(1−F(τ)))−H(µ)(g − f )(dµ,dτ)
)

dλ(t)

− lim
α→0

∫
t∈T

ct
(
αφt(1−G(t))+(1−α)χt(1−F(t))

1−αG(t)−(1−α)F(t)

)
(1−αG(t)− (1−α)F(t))− ct(χt)(1−Ft)

α
dt

− lim
α→0

∫
t∈T ◦

H
(∫

τ>t
µ(αg + (1−α)f )(dµ,dτ)

)
−H

(∫
τ>t

µf (dµ,dt)
)

α
dλ(t) > 0

=⇒
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(∫
τ≤t

(φτ(1−G(τ))−χτ(1−F(τ)))−H(µ)(g − f )(dµ,dτ)
)

dλ(t)
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−
∫
t∈T

ct(χt)(F(t)−G(t)) + (1−G(t))(φt −χt)c
′
t(χt)dt

−
∫
t∈T ◦
∇H(µ̂t)

∫
τ>t

µ(g − f )(dµ,dτ)dλ(t) > 0

=⇒
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(∫
τ≤t

(φτ(1−G(τ))−χτ(1−F(τ)))−H(µ)(g − f )(dµ,dτ)
)

dλ(t)

−
∫
τ∈T

∫
t≤τ

ct(χt)dt(f − g)(dµ,dτ)dτ −
∫
t∈T

(1−G(t))(φt −χt)Λ(t)dt

−
∫
t∈T ◦
∇H(µ̂t)

∫
τ>t

µ(g − f )(dµ,dτ)dλ(t) > 0

⇐⇒
∫

lf ,χ,λ(µ,τ)(f − g)(dµ,dτ) > 0

⇐⇒
∫

lf ,χ,λ(µ,τ)g(dµ,dτ) > a ·µ0.

Contradiction.
Necessity: We begin with Equation (18). Suppose

∫
|c′t(χt)−Λ(t)|(1− F(t))dt > 0, then

consider an alternative path χ′t = χt − sgn(c′t(χt)−Λ(t))ε. Then,

L(f ,χ′,λ)−L(f ,χ,λ) =
∫

(ct(χt)− ct(χ′t))(1−F(t))dt +
∫ (∫

s≤t
(χ′s −χs)(1−F(s))ds

)
dλ(t).

=
∫
c′t(χt)>Λ(t)

((ct(χt)− ct(χ′t)) +Λ(t)(χ′t −χt)) (1−F(t))dt

+
∫
c′t(χt)<Λ(t)

((ct(χt)− ct(χ′t)) +Λ(t)(χ′t −χt)) (1−F(t))dt

=
∫
c′t(χt)>Λ(t)

((ct(χt)− ct(χt − ε))− εΛ(t)) (1−F(t))dt

+
∫
c′t(χt)<Λ(t)

((ct(χt)− ct(χt + ε)) + εΛ(t)) (1−F(t))dt

=⇒
L(f ,χ′,λ)−L(f ,χ,λ)

ε
→

∫
|c′t(χt)−Λ(t)|(1−F(t))dt > 0.

This leads to a contradiction to (f ,χ,λ) being a saddle point.
Next, we pin down a and ξ and verify Equation (17). ∀µ ∈ S, for τ > t̄, select ∇H(0) s.t.

∇H(0) ·µ = H(µ) Since lf ,χ,λ is bounded,

l̂(µ) = sup
π∈∆(S),Eπ[µ]=µ0

Eπ[sup
τ∈T ◦

lf ,χ,λ(µ,τ)]

is a well defined real valued concave function on S. Let a ·µ be the supporting hyperplane
of l̂ at µ0µ0. Evidently, lf ,χ,λ(µ,τ) ≤ a ·µ.

Next, we prove that
∫
lf ,χ,λ(µ,τ)f (dµ,dτ) = a · µ0. Suppose for the purpose of contra-

diction that
∫
lf ,χ,λ(µ,τ)f (dµ,dτ) < a ·µ0. Then, since lf ,χ,λ(µ,τ) ≤ a ·µ, there exists an open
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set and ε > 0 s.t. infO > 0 and
∫
O

(a ·µ− lf ,χ,λ(µ,τ))f (dµ,dτ) > ε. Let (µ,τ) = Ef [(µ′, τ ′)|O].
Then, Ef [lf ,χ,λ(µ′, τ ′)|O] < a ·µ− ε.

Since aµ = l̂(µ), there exists a finite support distribution π ∈ ∆(S) that attains l̂(µ)− 1
4ε.

For each µ′ in the support of π, there exists τ ′ s.t. lf ,χ,λ(µ′, τ ′) > supτ lf ,χ,λ(µ′, τ) − 1
4ε.

We slightly abuse notation and let π denote the distribution of (µ′, τ ′) pairs. Therefore,
Eπ[lf ,χ,λ(µ′, τ ′)] > a ·µ− ϵ

2 .
Define g = f − f (O) · (f |O −π). Then,

lim
α→0

L(αg + (1−α)f ,χ,λ)−L(f ,χ,λ)
α

=
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(∫
s≤t

χs(G(s)−F(s))ds −
∫
τ≤t

H(µ)(g − f )(dµ,dτ)
)

dλ(t)

− lim
α→0

∫
t∈T ◦

H
(∫

τ>t
µ(αg + (1−α)f )(dµ,dτ)

)
−H

(∫
τ>t

µf (dµ,dτ)
)

α
dλ(t)

≥
∫

U (µ,τ)(g − f )(dµ,dτ) +
∫
t∈T ◦

(∫
s≤t

χs(G(s)−F(s))ds −
∫
τ≤t

H(µ)(g − f )(dµ,dτ)
)

dλ(t)

−
∫
t<t̄
∇H(µ̂t) ·

∫
τ>t

µ(g − f )(dµ,dτ)dλ(t)−
∫
t≥t̄

∫
τ>t

H(µ)(g − f )(dµ,dτ)dλ(t)

=f (O) ·
∫

lf ,χ,λ(µ,τ)(π − f |O)(dµ,dτ)

>f (O) ·
(
aµ− ϵ

2
− (a ·µ− ϵ)

)
> 0.

This leads to a contradiction to (f ,χ,λ) being a saddle point. Q.E.D.

D Proofs in Section 4

D.1 Proof of Proposition 6

Let ρ̃(t) = ρ(t)
α

α−1 , l̃(t) = α−1
α ρ(t)

(
ρ(t)
αΛ̂(t)

) 1
α−1

+χ
∫
s≤t Λ̂(s)ds − b. Since ξ ∈ CR+, the region

where ξ∗ > 0 is a countable collection of open intervals. Let (t′, t′′) be such an open inter-
val. We first note that λ(t) ≡ 0 on (t′, t′′). This is because (t′, t′′) ⊂ supp(f )C , which implies
Equation (3) being strictly slack. Then, the complementary slackness condition implies
λ(t) = 0.

Suppose the first statement is not true. Then, for sufficiently small ϵ, on (t′′ − ϵ, t′′),
l̃′′(t) > 0. l̃(t′′) = 0 and l̃(t) ≤ 0 for t ≥ t′′. Therefore, l̃ has a strict downward kink at t′′. On
the other hand, Λ̂ is constant on (t′′ − ϵ, t′′) and is decreasing when t ≥ t′′; hence, Λ̂(t)

1
1−α

could only have an upward kink at t′′. Contradiction.
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Suppose ρ̃′′ does not switch sign in (t′, t′′). Since l̃ < 0 on (t′, t′′) and t′ > 0, it has an
interior minimizer t∗ ∈ (t′, t′′), which implies l̃′′(t∗) > 0. This necessarily leads to l̃ having a
strict downward kink at t′′. Follow the same argument as before, there is a contradiction.
Since d

dt2ρ(t)
α

α−1 switches sign finitely many times, such intervals much be finite.
Since ξ∗(t) > 0 on (t′, t′′), the complementary slackness condition implies f (S, (t′, t′′)) =

0.
Next, consider the open region where ξ∗ = 0 and ρ̃′′ , 0. We prove that λ(t) > 0. Since

ξ∗(t) ≡ 0, Equation (25) implies Λ̂ being twice differentiable and

α − 1

α
α

α−1
ρ̃′′(t) +

α + 1
α − 1

χΛ̂(t)
1

α−1 Λ̂′(t) +
1

α − 1

(
χ

∫
s≤t

Λ̂(s)ds − b
)(
Λ̂

2−α
α−1 Λ̂′′(t) +

2−α
α − 1

Λ̂(t)
3−2α
α−1 Λ̂′(t)2

)
= 0

Suppose for the purpose of contradiction that λ(t) = 0. Since λ ≥ 0, λ is locally minimized
at t; hence, λ′(t) = 0. This implies Λ̂′(t) = 0 and Λ̂′′(t) = 0. Therefore, ρ̃′′(t) = 0, leading to
contradiction.

Since both the region where ξ∗ > 0 and the region where ξ∗ = 0&ρ̃′′ , 0 are finitely
many open intervals, the remaining region (ξ∗ = 0&ρ̃′′ = 0) constitutes finitely many
closed intervals. Q.E.D.

D.2 Proof of Proposition 7

Let f be a solution to the information acquisition problem and λ be the corresponding
multiplier. Let t = supSupp(f ). WLog, we assume that ∀t < t, ρ(t) > 0 (otherwise f can
be truncated at t). Suppose Λt is not strictly increasing for t < t, then the region where Λt

is flat constitutes a countable collection of open intervals ∪(li , ri). We prove by induction
that ∀n, there exists an optimal strategy fn s.t. ∀i ≤ n,

∫
[li ,ri ]

Gfn(t)fn(dµ,dt) = 0. Easy to
see that it is sufficient to prove the statement for n = 1.

Wlog, assume that
∫

(l1,r1)
Gf (t)f (dµ,dt) > 0. Let µ∗ solve

µ∗ ∈ argmax
µ∈S

lf ,λ(µ,r1),

i.e. µ∗ = M( ρ(ri )
Λ(ri )

) > 0.5. Let

p∗ = max

χ
∫
t∈(li ,ri )

(ri − li)f (dµ,dt)

H(µ∗)
,

∫
t≥ri

f (dµ,dτ)

 .

10



Now, we claim that f1 defined as

f1(µ,t) =



f (µ,t) t ≤ l1

0 t ∈ (l1, r1)
p∗

2
(δµ∗+0.5,r1 + δ0.5−µ∗,r1) t = r11−

p∗∫
t≥r1

f (dµ,dτ)

f (µ,t) t > r1

solves the information acquisition problem and
∫

(l1,r1)
Gf1

(t)f1(dµ,dt) = 0. The latter is
obvious. We first verify that f1 is a feasible strategy:

Gf1
(t)



= Gf (t) ≥ 0 t ≤ r1

=
∫
τ∈(l1,t)

(t − l1)f (dµ,dτ) > 0 t ∈ (l1, r1)

=
∫
τ∈(l1,t)

(t − l1)f (dµ,dτ)− p∗H(µ∗) ≥ 0 t = r1

=

1−
p∗∫

t≥ri
f (dµ,dτ)

Gf (t) ≥ 0 t > r1( while well defined)

Note that Supp(f1) ⊂ Supp(f )∪
{
(µ∗, r1), (1−µ∗, r1)

}
⊂ argmax lf ,λ. Therefore, f1 is optimal

since it satisfies Equation (25) on (0, t). By definition
∫

[l1,r1)
Gf1

(t)f1(dµ,dt) = 0. We only

need to verify that
∫
Gf1

(t)f1(dµ,r1) = 0. Note that Gf1
(r1) > 0 only if p∗ =

∫
t>r1

f1(dµ,dτ) =
0. Then, r1 is the last period. In this case, it is without of optimality to move f (·, r1) earlier
in time until Gf1

reaches zero at the mass point.
Now that we have a collection fi ⊂ F s.t. ∀i ≤ n,

∫
[li ,ri ]

Gfn(t)fn(dµ,dt) = 0. Since
F is compact and U is bounded and continuous, there exists a limit point f ∗ ∈ F and
f ∗ is optimal as it achieves the same expected utility. Note that fn

w−→ f ∗ implies Gf ∗ ≤
limGfn and ∀i,

∫
t∈[li ,ri )

f ∗(dµ,dt) ≤ lim
∫
t∈[li ,ri )

fn(dµ,dt) = 0. Therefore,
∫
Gf ∗(t)f ∗(dµ,dt) =

0. Q.E.D.

D.3 Proof of Proposition 8

Let r(t) = −dlog(ρ(t))
dt . Differentiate the RHS of Equation (26) w.r.t. t:

dr(t)
dt

=
(α − 1)κ(t)κ′′(t)−αχκ(t)

1
1−ακ′(t)− (α − 1)κ′(t)2

(α − 1)2κ(t)2 .

When κ′(t) > 0 and κ′′(t) < 0, r ′(t) < 0, which proves the first point of Proposition 8.
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When κ′(t) < 0 and κ′′(t) > 0, r(t) > 0 implies −κ′(t) < χ ·κ(t)
1

1−α . Therefore,

r ′(t) >
(α − 1)κ(t)κ′′(t)−αχκ(t)

1
1−ακ′(t) + (α − 1)χκ(t)

1
1−ακ′(t)

(α − 1)2κ(t)2 > 0,

which proves the second point of Proposition 8.
When κ′(t) ≡ 0, r(t) is constant, which implies

κ(t) =

−χ
(
eC·αr+αrt − 1

)
(α − 1)r


− 1−α

α

.

Note that when t →∞, −χ(eC·αr+αrt−1)
(α−1)r → −∞ for any C ∈ R. Therefore, the only possible

case where κ(t) is well-defined is C = −∞ and κ(t) ≡
(

χ
(α−1)r

)α−1
α . Q.E.D.

D.4 Proof of Proposition 9

Step 1. We claim that in the equilibrium, the stopping time could not involve any point
mass. For the purpose of contradiction, suppose that player i’s stopping time involves a
point mass at t > 0. Then, for j , i, the effective discount factor

ρj(t) = Emin{τ∗−j≥t}

[
1

#(τ−j ≤ t) + 1

]
· e−rt

jumps down at t. Let f ∗ be the optimal strategy of player j. Let Borel measure f ∗εt =∫
s∈[t,t+ε]

f ∗(µ,ds). Define f ε = f ∗− f ∗ ·δτ∈[t,t+ε] + f ∗εt δτ=t−ε for ε ∈ (0, t). We claim that ∃ε > 0
s.t. f ∗εt (S) = 0. If not, let λj be the multiplier from the dual problem:

Lj(f ε,λj)−Lj(f ∗,λj)

=
∫
s∈[t,t+ε]

|µ|(ρj(t − ε)− ρj(s))f ∗(dµ,ds)

+
∫
s∈(t−ε,t+ε]

(
−χ(F∗(t)−Fε(s))−Ef ε [H(µ̂s) +H(µs)]−Ef ∗ [H(µ̂s) +H(µs)]

)
dλj(s)

≥
∫
s∈[t,t+ε]

|µ|(ρj(t − ε)− ρj(s))f ∗(dµ,ds)

− (Λj(t − ε)−Λj(t + ε))f ∗εt (S) (χ+ supH − infH)

=⇒ lim
ε→0

Lj(f ε,λj)−Lj(f ∗,λj)

f ∗εt (S)
≥ (ρj(t−)− ρj(t))− (Λ(t−)−Λ(t))(χ+ supH − infH) > 0

In the last inequality, we use the fact that tλj(t) is L1 on [t − ε, t]. This contradicts the fact
that f ∗ maximizes Lj(f ∗,λj).
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Therefore, ∃ε > 0 s.t. f−i(S, [t, t + ε]) = 0. This implies

ρi(s)

≥ ρi(t)e
−r(s−t) s < t

= ρi(t)e
−r(s−t) s ∈ [t, t + ε]

Since f ∗i involves a point mass at t, this implies λi(s) = 0 on (t − δ, t) for some δ > 0. On
(t − δ, t):

α − 1
α

ρi(s)
α

α−1

(αΛi(t)
1

α−1 )
+χ

∫
τ≤t−δ

Λi(τ)dτ +χ(s − t + δ)Λi(t) < b

=⇒ α − 1
α

ρi(t)e
− αr
α−1 (s−t)

(αΛi(t)
1

α−1 )
+χ

∫
τ≤t−δ

Λi(τ)dτ +χ(s − t + δ)Λi(t) < b,

with equality holds at b. Note that LHS is strictly convex, hence strictly increasing when
s→ t−. On the other hand, inequality

α − 1
α

ρi(t)e
− αr
α−1 (s−t)

(αΛi(s)
1

α−1 )
+χ

∫
τ≤s

Λi(τ)dτ ≤ b

holds for s ∈ [t, t+ ε). This means LHS is decreasing when s→ t+, requiring Λi(s)
1

1−α to be
strictly decreasing when s→ t+. However, Λi(s)

1
1−α could only have an upward kink at t.

Contradiction.
Therefore, ∀i, ξi ≡ 0. The equilibrium is characterized by Λi ’s.
Step 2. We rule out any equilibrium that involves corner solutions, i.e. f ({−M,M} × T ) >

0. Suppose it is optimal to stop at M at t, let z(t) = Λi(t)/ρi(t), Equation (9) implies

ρi(s)M +χ

∫
τ≤s

Λi(τ)dτ −MαΛi(s) ≤ b with equality at t

=⇒ ρ′i(t)M +χρi(t)z(t)−Mα(ρi(t)z
′(t) + ρ′i(t)z(t)) = 0

⇐⇒ ρ′i(t) (M −Mαz(t)) +χρi(t)z(t)−Mαρi(t)z
′(t) = 0

=⇒ (z(t)(χ+ rMα)− rM)−Mαz′(t) ≥ 0

Note that whenever z(t) ≤ 1
αM

1−α, Assumption 2 together with the inequality above im-
plies z′(t) < 0. This means, for any t′ > t, it is optimal to stop at ±M.

Next, we prove that for any ρi , stopping at only ±M from t is dominated by stopping

at ±
(

χ
(α−1)r

) 1
α . Since ρi is arbitrary, we normalize t to 0. Suppose for contradiction that

stopping at ±M is optimal, then

M ∈ argmax
µ≤M

µ ·
∫
τ≥0

ρi(τ)
(
e
− χ
µα τ χ

µα

)
dτ
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=⇒
∫
τ≥0

ρi(τ)e−λτ
(α − 1

α
−λτ

)
dτ ≤ 0,

where λ = χ
Mα . Let ρi(t) = e−

∫
ωi(s)ds, where ωi > r, then ∀s ≥ 0,

d
ds

∫
τ≥0

ρi(τ)e−λτ
(α − 1

α
−λτ

)
dτ = −

∫
τ≥s

ρi(τ)
(α − 1

α
−λτ

)
dτ ≥ 0,

where inequality is strict when s > 0. This implies that

d
dλ

1

λ
1
α

∫
τ≥0

e−(r+λ)τλdτ =
d

dλ
λ1− 1

α

r +λ
< 0

=⇒ (α − 1)r −λ = (α − 1)r − χ

Mα < 0

However, the last inequality violates Assumption 2. Therefore, we focus on only interior
solutions.

Step 3. We derive an ODE system characterizing the equilibrium. The sufficient and
necessary FOCs for an interior equilibrium define (µ∗i ,ρi ,Λi) solving:

−
dlog(ρi(t))

dt
= r +

∑
j,i

χ
µ∗j(t)

α

ρi(t) = α ·µ∗i (t)
α−1Λi(t)

α − 1
α

ρi(t)
(
ρi(t)
αΛi(t)

) 1
α−1

+χ

∫
s≤t

Λi(s)ds = bi

(37)

Define ωi(t) := −dlog(ρi(t))
dt , then Equation (37) is equivalent (with additional initial condi-

tions ρi(0) = 1) to an ODE system for ωi ’s:

ω′i(t) =
∑
j,i

( n
n− 1

(ω(t)− r)− (ωj(t)− r)
)( n

n− 1
(ω(t)− r)− (αωj(t)− r)

)
, (38)

where ω =
∑
ωi
n and n

n−1(ω(t)− r)− (ωj(t)− r) > 0.
Figure 11 illustrates the phase diagram of Equation (38) for the n = 2 case. In the

phase diagram, there is a unique interior steady state (the red point). There are more
stable points on the boundary (the black points). We would like to argue that a path of ω
constitutes an equilibrium if and only if it starts from the red line.

Step 4. We verify the proposed strategies (conditional on ζ > 0) constitute all symmet-
ric regular equilibria of the game with ωi(0) ≥ r

ζ . The proposed strategies defines

ωi(t) =r + (n− 1)λ∗(t)

=
r

1− 1−ζ
1−ζe(α−1)r(t−t)

.
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r

1-(α-1) (n-1)
r

r

1-(α-1) (n-1)

r

Figure 11: Phase diagram of Equation (38).

It is easy to verify that such ωi ’s correspond to all symmetric solutions of Equation (38):

ω′i(t) =(n− 1)
( n
n− 1

(ωi(t)− r)− (ωi(t)− r)
)( n

n− 1
(ωi(t)− r)− (αωi(t)− r)

)
=(ωi − r)

(ωi − r
n− 1

− (α − 1)ωi

)
with initial value no less than r

ζ .
Step 5. We rule out any asymmetric equilibrium where ω(t) is ever weakly higher than

r
ζ . This corresponds to the blue curve in Figure 11. Equation (38) implies

ω′(t) =
n− 1
n

∑
i

( n
n− 1

(ω(t)− r)− (ωi(t)− r)
)( n

n− 1
(ω(t)− r)− (αωi(t)− r)

)
=
n− 1
n

n n2

(n− 1)2 (ω − r)2 − n
n− 1

(ω(t)− r)n((α + 1)ω(t)− 2r) +
∑
i

(ωi(t)− r)(αωi(t)− r)

 .
≥
(

n2

n− 1
(ω(t)− r)2 −n(ω(t)− r) ((α + 1)ω(t)− 2r) + (n− 1)(ω(t)− r)(αω(t)− r)

)
.

=(ω(t)− r)
(
ω − r
n− 1

− (α − 1)ω
)
.

The inequality is the Jensen’s inequality (strict if the equilibrium is asymmetric). This
implies that ω is always higher than ω̃, the solution of

ω̃′(t) = (ω̃(t)− r)
(
ω̃ − r
n− 1

− (α − 1)ω̃
)
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when ω̃ and ω have the same initial condition. ω̃(t) has an explicit general solution:

ω̃(t) =
r

1− (n−1)(α−1)
1+Ce(α−1)rt

.

Suppose ω(t) ≥ r
1−(n−1)(α−1) and ωi ’s are asymmetric, then ω′(t) > 0. Therefore, there exists

t′ > t s.t. ω(t′) > r
1−(n−1)(α−1) . Then, ω(t) converges to ∞ in finite time. This implies that

at least one µ∗i (t) converges to 0 in finite time. As a result, at least n − 1 ωi (t)’s diverges
to∞ in finite time (at the same time t where the first µ∗i (t) converges to 0). For notational
simplicity, denote these n− 1 indices 2, . . . ,n.

Next, we argue that ω2 = · · · = ωn. Suppose for the purpose of contradiction that
ω2(t) < ω3(t) for some t, where ω3 is the largest among all ωi . Wlog, we pick t that for all
t′ > t, ω′2(t′),ω′3(t′) > 0. Then,

ω′3(t)−ω′2(t) =
( n
n− 1

(ω(t)− r)− (ω2(t)− r)
)( n

n− 1
(ω(t)− r)− (αω2(t)− r)

)
−
( n
n− 1

(ω(t)− r)− (ω3(t)− r)
)( n

n− 1
(ω(t)− r)− (αω3(t)− r)

)
≥
( 2n
n− 1

(ω(t)− r)− ((α + 1)ω3(t)− 2r)
)
· (ω3(t)−ω2(t))

=⇒
dlog(ω3(t)−ω2(t))

dt
≥
( 2n
n− 1

(ω(t)− r)− ((α + 1)ω3(t)− 2r)
)

≥ n
n− 1

(ω(t)− r)− 1
α

( n
n− 1

(ω − r) + r
)

+ r

>
n(α − 1)
α(n− 1)

(ω(t)− r)

=⇒ (ω3 −ω2)(t + s) ≥(ω3 −ω2)(t) · e
∫ s
t

n(α−1)
α(n−1) (ω(y)−r)dy

.

On the other hand,

ω′3(t) ≤ n2

n− 1
(ω(t)− r)2

=⇒ ω3(t + s) ≤ω3(t) +
∫ t+s

t

n2

n− 1
(ω(y)− r)2dy

Note that ω3 −ω2 is growing in exponential rate while ω3 is growing in polynomial rate
when ω→∞. Therefore, ω2→−∞, which contradicts ω2(t)→ +∞. As a result, ω2 = ω3,
i.e. ω2 = . . .ωn. Note that if ω1→∞, then ω1 is also identical to all other ωi ’s. So we focus
on the case ω1 < K <∞.

Next, we argue that ω1(t)→ r. Suppose not, i.e. ω1 − r ≥ ε > 0, Equation (38) reduces
to

ω′1(t) =(ω1(t)− r)
(
ω1(t)− r
n− 1

− (α − 1)ω2(t)
)
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=⇒ ω′1(t) ≤ K2

n− 1
− ε(α − 1)ω2(t)

≤ K2

n− 1
− ε(α − 1)ω̃(t)

It can be easily verified that the RHS integrates to −∞ when t→ t. However, ω1(t)→∞
implies µ∗i (t)→∞ for i ≥ 2. This implies contestant 2, . . . ,n stops with probability strictly
less than one at t, which is clearly suboptimal.

However, ω1(t)→ r implies that the strategies is not interior; hence, we rule out this
possibility.

Step 6. We rule out any equilibrium where ω(t) is always strictly lower than r
ζ . This

corresponds to the green curve in Figure 11. Note that whenever ωi = ωj , ω′i = ω′j . There-
fore, the order of ωi ’s does not change. Let ωi be the largest (with possible ties). Choose
an arbitrary t, Equation (37) implies:

d
dt

(
ωi(t)−

n
n− 1

ω(t)
)

=
( n
n− 1

(ω(t)− r)− (ωi(t)− r)
)( n

n− 1
(ω(t)− r)− (αωi(t)− r)

)
,

where ( n
n− 1

(ω(t)− r)− (ωi(t)− r)
)
≥

( n
n− 1

(ω(t)− r)− (ω(t)− r)
)
> 0;( n

n− 1
(ω(t)− r)− (αωi(t)− r)

)
≤

( n
n− 1

(ω(t)− r)− (αω(t)− r)
)
< 0

Therefore:
d
dt

(
ωi(t)−

n
n− 1

ω(t)
)
≤
( n
n− 1

(ω(t)− r)− ((ω(t)− r)
)( n

n− 1
(ω(t)− r)− (αω(t)− r)

)
< 0.

n
n−1(ω(t)−r)−(ωi(t)−r) is strictly increasing with an upper bound. Therefore, it converges.
Suppose limt→∞

n
n−1(ω(t)− r)− (ωi(t)− r) = η > 0, then

lim
t→∞

d
dt

(
ωi(t)−

n
n− 1

ω(t)
)

≤ lim
t→∞

η
( n
n− 1

(ω(t)− r)− (αω(t)− r) +α(ω(t)−ωi(t))
)
.

Suppose ω is bounded away from r
1−(n−1)(α−1) or ωi is bounded away from ω, the RHS is

bounded away from 0. But this contradicts the existence of limit. Therefore, there exists
a sequence of tℓ s.t. limω = limωi = r

1−(n−1)(α−1) ; then, η = (α−1)r
1−(n−1)(α−1) . Since ωi is the

largest, this implies limωj = r
1−(n−1)(α−1) . However, in this limit:

dω(t)
dt

= ηα

(
ω(t)− 1 · r

1− (n− 1)(α − 1)

)
+O

(∥∥∥∥∥ω(t)− 1 · r
1− (n− 1)(α − 1)

∥∥∥∥∥2)
i.e. ω diverges from the limit. Hence, this is not possible that η > 0.

Next, we rule out the possibility that η = 0, i.e. ωi(t)→ r. However, this contradicts
the strategies being interior. Q.E.D.
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