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Abstract

We study the “reduced-form” indirect cost of information arising from flexible se-
quential minimization of a “primitive” direct cost function. Indirect cost functions
are characterized by a simple recursive condition, sequential learning-proofness (SLP).
Under a smoothness condition, (i) SLP is equivalent to uniform posterior separability
and (ii) the mapping from direct to indirect costs is tractably characterized by the
cost of incrementally informative “diffusion” signals. We apply this framework to
establish—and resolve—a trilemma among SLP and two other natural properties of
information costs: prior invariance and constant marginal cost. Our analysis provides
foundations for two new indirect cost functions: Total Information and the Minimal
Likelihood Ratio (MLR) cost.

1 Introduction
Information is a valuable but costly resource. There is a unified paradigm for model-

ing its value based on the extent to which it facilitates decision-making (D. A. Blackwell

1951). There is less consensus on how to model its cost. In this paper, we develop a

framework for modeling the cost of information based on the core tenet of production

theory: that outputs are produced at minimal cost by combining inputs optimally.

Our framework features a Bayesian decision-maker (DM) who learns about an un-

certain state by acquiring costly information in the form of Blackwell experiments (i.e.,

signals correlated with the state). The DM’s “primitive” information acquisition tech-

nology is described by an arbitrary direct cost function over experiments. The DM pro-

duces any “target experiment” by optimizing over all sequential information acquisition

strategies that generate as much information as the target. We call the DM’s minimal ex-

pected cost of producing target experiments her indirect cost function. The indirect cost
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function then represents the DM’s “reduced-form” cost of acquiring information in any

downstream decision problem (as in the rational inattention literature, e.g., Sims 2003;

Matějka and McKay 2015; Maćkowiak, Matějka, and Wiederholt 2023).

We propose this framework as a unified way of capturing two key features of real-

world information acquisition. First, in many important and widely studied settings,

it is both feasible and optimal for the DM to acquire information piece-by-piece in a

sequential fashion. For example, in a typical statistical sampling problem (Wald 1945), a

firm learns about the demand for a new product by sequentially sampling consumers

(e.g., via surveys, A/B tests, or RCTs), subject to a direct physical/pecuniary cost that

depends on the sample’s size and features.1 In a typical encoding problem (Shannon 1948),

an online consumer chooses between products by sequentially querying their attributes

(e.g., on a price-comparison website), incurring a cognitive/computational cost per query.

And, in a standard perception task (Ratcliff 1978), a lab subject faced with a visual stimulus

gradually contemplates how to classify it, paying a cognitive cost while she thinks.2

Second, the cost of information is highly context-specific. In the above examples, to

paraphrase Sims (2010, p. 161), the physical/pecuniary costs of generating new infor-

mation through statistical sampling may bear no relation to the cognitive/computational

costs of processing freely available information in encoding and perception tasks.

Accommodating both of these features is challenging, which has required the litera-

ture to make significant modeling compromises. A classical approach involves studying

sequential learning with specific direct costs/production technologies, as in the literature

on sequential sampling in statistics (Wald 1945; Wald 1947; Arrow, D. Blackwell, and

Girshick 1949), optimal encoding in information theory (Shannon 1948; Huffman 1952),

and drift-diffusion models of perception in psychology/neuroscience (Ratcliff and McK-

oon 2008; Fehr and Rangel 2011; Fudenberg, Strack, and Strzalecki 2018). By adopting

specific “units for information,” such frameworks are “useful but only on very limited

problems” (Arrow 1996, p. 120). On the other hand, the modern rational inattention

paradigm (Sims 2003) abstracts away from the underlying production procedure and in-

stead justifies particular reduced-form cost functions via context-specific axioms (Hébert

1For instance, FDA 2019 encourages the use of multi-stage RCTs in the context of clinical trials for
pharmaceutical products. Sequential A/B testing is common in the tech industry (e.g., Johari et al. 2022).

2Other examples of sequential learning abound: scientific research and industrial R&D involve multiple
adaptively designed stages of experimentation, voters learn about political issues by reading news articles
one-by-one, and so on. Even in settings where information acquisition may initially appear to be one-shot,
there is often some degree of sequentiality. In perception tasks, subjects’ response times are nonzero but
short (e.g., on the order of seconds). In statistical sampling problems, non-sequential (fixed sample size)
procedures still take time to implement and can be interpreted as non-contingent sequential procedures.
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and Woodford 2021; Caplin, Dean, and Leahy 2022; Denti, Marinacci, and Rustichini

2022; Pomatto, Strack, and Tamuz 2023) or their implications for the DM’s choice behav-

ior (Caplin and Dean 2015; Oliveira et al. 2017; Denti 2022; Dean and Neligh 2023). Our

framework bridges these two perspectives, permitting analysis of both the context-free
implications of sequential optimization for reduced-form (indirect) cost functions and

context-specific cost functions arising from optimization in particular settings.

The Indirect Cost of Information. Our first contribution is to characterize the full class

of indirect costs in terms of a novel recursive property that we call sequential learning-
proofness (SLP). A cost function is SLP if the cost of acquiring any target experiment in

one shot is weakly lower than the expected cost of decomposing it into two steps. We in-

terpret this as a minimal “internal consistency” requirement for any reduced-form model

of information cost: if the DM’s cost function were not SLP, then she could optimize away

some of its features using a simple two-step strategy. We show that a cost function is the

indirect cost for some underlying direct cost if and only if it is SLP (Theorem 1). Thus,

SLP fully characterizes the “context-free” implications of sequential optimization.

We then show (Theorem 2) that a cost function C is SLP and Regular (a weak no-

tion of “local differentiability”) if and only if it has a uniformly posterior separable (UPS)

representation, i.e., given the set Θ of states, there is some convex “potential function”

H : ∆(Θ)→ (−∞,+∞] such that

C(π) = CHups(π) := Eπ [H(q)−H(p)] (UPS)

for every prior belief p ∈ ∆(Θ) and distribution π ∈ ∆(∆(Θ)) of Bayesian posteriors q ∈
∆(Θ) induced by some experiment. The class of UPS costs (introduced by Caplin, Dean,

and Leahy 2022) includes most specifications studied in the rational inattention litera-

ture, including mutual information (Sims 2003; Matějka and McKay 2015) and the more

general family of neighborhood-based costs (Hébert and Woodford 2021). Theorem 2

provides a novel optimality-based rationale for using such UPS costs in applications.

The Sequential Learning Map. Our second contribution is to characterize the sequential
learning map, Φ , that transforms each direct cost C into its corresponding indirect cost

Φ(C) (see Figure 1). This map determines how properties of a given direct cost function

are transformed (or preserved) under optimization. Conversely, the pre-image of this map

determines the “primitive” economic assumptions that are implicitly imposed on the un-

derlying direct cost when one uses a particular functional form for the indirect cost.

Central to our characterization is an object that we call the kernel of a cost function,

which summarizes the cost of “incremental evidence,” i.e., experiments that shift pos-
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terior beliefs only locally (analogous to a continuous-time “diffusion signal”). Our key

observation is that the kernel of any direct cost is invariant under the sequential learning

map, i.e., the cost of incremental evidence cannot be further optimized.

We proceed in two steps. First, we develop general lower and upper bounds on the se-

quential learning map. For any direct cost C, the indirect cost Φ(C) is (i) locally bounded

below by the kernel of C and (ii) globally bounded above by the UPS cost obtained by

integrating the kernel of C (Theorem 3). Economically, the UPS upper bound is the total

expected cost associated with the incremental learning strategy that only acquires incre-

mental evidence (which, in general, need not be an optimal strategy under C).

Second, we show that the upper bound is tight if and only if the indirect cost Φ(C)

is Regular/UPS. Formally, we obtain an exact characterization of the sequential learning

map for the co-domain of Regular/UPS indirect costs. Given such an indirect cost CHups, a

direct cost C satisfies Φ(C) = CHups if and only if (i) the kernel of C is HessH (the Hessian

of the potential function H) and (ii) C favors learning via incremental evidence (FLIEs), i.e.,

weakly exceeds the expected cost of incremental learning (Theorem 4).

Since it is natural to assume that the direct cost FLIEs is some applications but not

in others, Theorem 4 helps delineate when Regular/UPS indirect costs are economically

reasonable. Theorem 4 also delivers a tractable method for calculating Regular/UPS from

their direct costs, and vice versa. As a proof of concept, we illustrate this method for

several important classes of UPS costs from the literature (Section 5.1).

Direct Cost

Indirect Cost

Regular Indirect Cost

⇔ SLP (Theorem 1)

⇔ UPS (Theorem 2)⇔ FLIEs

C Φ(C)

C CHups
with kernel HessH

with kernel kC
(Theorem 3)

(Theorem 4)

Sequential
Optimization

Φ

Figure 1: The sequential learning map.

LLR
Cost

Total
Info.

MLR
Cost

Prior
Invariant

Constant
Marginal

Cost

Sequential Learning-Proof

Regular
/ UPS

Figure 2: Information cost trilemma.

Information Cost Trilemmas. Our third contribution is to characterize the implications

of sequential optimization in specific economic contexts. This exercise serves two pur-

poses: to pinpoint specific indirect cost functions for use in applications, and to elucidate

inherent modeling tradeoffs in the rational inattention literature.
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To these ends, we study how our notion of indirect (or SLP) cost interacts with two ax-

ioms that the literature has advocated for imposing on reduced-form cost functions. The

first axiom, Prior Invariance, requires the cost of any given Blackwell experiment to be in-

dependent of the DM’s prior beliefs. This property is natural when modeling physical or

pecuniary information costs (e.g., statistical sampling or R&D).3 The second axiom, Con-

stant Marginal Cost (CMC), posits that the cost of running two independent experiments

together equals the sum of their individual costs. Pomatto, Strack, and Tamuz (2023) pro-

pose this property as a non-parametric way of modeling costs that are “linear in sample

size,” which is a familiar and natural assumption in statistical sampling problems.

We offer two characterization results. First, we establish an information cost trilemma
(Theorem 5) among these three natural properties: SLP, Prior Invariance, and CMC. An

information cost function can satisfy any two of these properties, but no nonzero cost

function can satisfy all three of them (see Figure 2). Pomatto, Strack, and Tamuz (2023)

show that the unique Prior Invariant and CMC cost function is the Log-Likelihood Ratio
(LLR) cost.4 We show that the unique SLP and CMC cost function is the Total Information
cost, a novel UPS cost defined by the potential function

HTI(q) :=
∑

θ,θ′∈supp(p)

γθ,θ′q(θ) log
(
q(θ)
q(θ′)

)
, (TI)

where the coefficients γθ,θ′ ≥ 0, which control the cost of distinguishing between pairs of

states, can be chosen by the modeler.We conclude that Total Information is the natural

reduced-form cost function in applications where CMC is a desirable assumption, such

as statistical sampling problems. To show that the remaining two-way intersection is

nonempty, we construct the SLP and Prior Invariant Minimal Likelihood Ratio (MLR) cost:

CMLR(π) := Eπ

[
max

θ∈supp(p)

{
1−

q(θ)
p(θ)

}]
(MLR)

for every prior p and distribution π ∈ ∆(∆(Θ)) over posteriors q. We argue that the MLR

cost is useful in certain applications, such as costly monitoring in games (see Section 6.1).

We argue that the main tension in the trilemma is between SLP and Prior Invari-

ance. For instance, no commonly studied Prior Invariant reduced-form costs in the lit-

erature are SLP. This tension is natural: since SLP costs are derived from expected cost-

minimization, they “should” endogenously depend on prior beliefs. Our framework also

suggests a natural way to alleviate this tension: view Prior Invariance as a natural “prim-

3Many authors have advocated for this property on these and other grounds. See, e.g., Woodford (2012),
Gentzkow and Kamenica (2014), Mensch (2018), and Denti, Marinacci, and Rustichini (2022).

4Formally, their characterization of the LLR cost requires an additional “dilution linearity” axiom, which
is implied by SLP and omitted from the present discussion for simplicity.
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itive” property for direct costs, rather than a “reduced-form” property for indirect costs.

Following this logic, we introduce the novel class of Sequentially Prior Invariant (SPI)

cost functions: indirect costs that are generated by Prior Invariant direct costs. Our sec-

ond characterization result uses this notion to resolve the information cost trilemma.

Given a binary state space Θ = {0,1} and letting q ∈ [0,1] denote the probability of θ = 1,

Morris and Strack (2019) define the Wald cost function as

CWald := CH
∗

ups, where H ∗(q) := (2q − 1)log
(
q

1− q

)
, (Wald)

i.e., the special case of Total Information with binary states and symmetric coefficients

(γ0,1 = γ1,0 = 1). We establish a three-way equivalence: a cost function is SPI and CMC if
and only if it is SPI and Regular/UPS if and only if it is proportional to the Wald cost (The-

orem 6). From a positive perspective, the Wald cost resolves the trilemma and, equally

importantly, demonstrates that the UPS model can be justified by optimization of a phys-

ical/pecuniary direct cost. However, the Wald cost is the unique cost function with either

of these virtues and, being defined only for binary-state settings, is very special.

Thus, our application concludes with a challenge for the literature, in the form of a

new modeler’s trilemma. Every modeler desires three things: realism (SPI), tractability

(Regularity), and generality (general state space). Pick any two; you can’t have all three.

Roadmap. With the majority of related papers discussed already, we review additional

related papers below. Section 2 presents the framework. Sections 3 and 4 characterize the

class of indirect cost functions and the sequential learning map, respectively. Section 5

develops the information cost trilemma and other applications. Section 6 concludes with

a discussion of extensions and open questions.

1.1 Related Literature
The earliest example of an indirect cost appears in Shannon (1948), which introduces

the concept of mutual information and shows that it approximates the indirect cost for

encoding problems where the direct cost assigns equal cost to all “bits” (i.e., binary parti-

tions of the state space) and infinite cost to all other experiments. In Section 5.1, we char-

acterize all direct costs that yield mutual information as their exact indirect cost, offering

an optimization foundation for the baseline rational inattention model (Sims 2003).5

5Shannon’s result is often interpreted as providing an optimization foundation for mutual information
as a reduced-form cost function in rational inattention models (Sims 2003; Sims 2010). However, a well-
known caveat to this interpretation is that Shannon’s direct cost only generates mutual information as its
exact indirect cost if the DM can simultaneously “block code” many i.i.d. draws of the state (Cover and
Thomas 2006, Ch. 10), which may not be a compelling assumption for economic applications.
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Our work builds on Morris and Strack (2019), which derives UPS costs as reduced-

form cost functions arising from sequential sampling of continuous-time diffusion sig-

nals. Their key assumptions are that (i) the DM samples from an exogenous diffusion

signal process, choosing only when to stop, and (ii) there are only two states.6 Hébert and

Woodford (2023, Proposition 7), concurrent to our work, derive a similar result, assuming

that the DM has an exogenous preference for using only diffusion signal processes. These

results could be viewed as special cases of the “sufficiency” direction of our Theorem 4

(i.e., Φ(C) is UPS if C FLIEs).7 Our framework gains its generality and power by allowing

the DM to optimally choose the signal process. We significantly extended these results

by establishing that UPS indirect costs arise from arbitrary direct costs and general se-

quential learning strategies only if the optimal strategy is to employ diffusion signals (the

“necessity” direction of Theorem 4).

There is a small literature building on our paper. Several papers impose SLP as an ax-

iom on reduced-form cost functions in various applications (e.g., Müller-Itten, Armenter,

and Stangebye 2023; Wong 2023; Li 2022). Hébert and Woodford (2023, Section 5) and

Miao and Xing (2024) apply Total Information in optimal stopping and dynamic decision

problems, respectively. Denti, Marinacci, and Rustichini (2022, Section 2) study the spe-

cial case of our framework with Prior Invariant direct costs and develop a variant of our

finding (implied by Theorem 6) that no nonzero, bounded UPS cost function is SPI.

2 Model
A decision-maker (DM) can acquire information about an unknown state θ ∈Θ, where

Θ is a finite set. The DM’s beliefs about the state are elements p,q ∈ ∆(Θ) of the simplex.

By convention, we let p denote the DM’s prior belief and q denote his posterior belief.

For most of our analysis, we take a belief-based approach and model information as

a random posterior π ∈ R := ∆(∆(Θ)) induced by some Blackwell experiment.8 For every

π ∈ R, we let pπ := Eπ[q] denote the prior belief that is consistent with Bayesian updating

from π. Let R◦ :=
⋃
p∈∆(Θ){δp} denote the set of all degenerate measures (correspond-

6When there are more than two states, Morris and Strack (2019) show that, due to the exogeneity of their
signal process, only a “small set” of target experiments can be implemented by some stopping strategy.

7Hébert and Woodford 2023 assume “preference for gradual learning” (PGL), which is a stronger version
of FLIEs that is defined only for “posterior separable” direct costs. Formally, Theorem 4 does not nest
the results of these papers because we study a discrete-time framework. In Section 6.2, we describe an
extension of our framework that lets us embed the continuous-time information acquisition procedures of
these papers, facilitating a more direct comparison.

8Formally, fixing a Polish signal space S, a (statistical) experiment σ is a measurable map σ : Θ→ ∆(S). It
is well-known that every experiment σ is equivalently characterized by the Bayesian random posterior that
it induces. Thus, for convenience, we often refer to random posteriors and experiments interchangeably.
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ing to uninformative experiments). In Section 6.1, we discuss the implications of the

belief-based approach and show how our model can be extended to handle alternative

formulations.

An (information) cost function is a map C : R→ R+ satisfying C(R◦) = {0}, i.e., trivial

experiments have zero cost.9 We make no other a priori assumptions about the shape of

C or the structure of dom(C) := {π ∈ R | C(π) < +∞}, the set of feasible experiments. This

generality allows us to capture a wide range of settings, including those where dom(C) is

highly restricted.

Let C denote the set of all information costs. We endow C with addition, multiplication

by positive scalars, and the pointwise order ⪯ (i.e., C ⪯ C′ if and only if C(π) ≤ C′(π) for

all π ∈ R). With this structure, C is a convex cone, a complete lattice, and closed under

pointwise limits (formal analysis relegated to Appendix I).

2.1 Sequential learning and indirect cost
Given any target random posterior π ∈ R, the DM aims to find the cheapest infor-

mation acquisition procedure that “produces” π. The information acquisition needs not

be one-shot, that is, there can be many “periods” and the experiments in “later” periods

are specified by contingent plans of outcome of experiments in the “earlier” periods. We

begin with defining a simplest two-period contingent plan: Π ∈ ∆(R) is a probability

measure of random posteriors with finite non-degenerate support.10

1. The first-period experiment: the experiment in the first period (π1) is implicitly defined

by the projection π1(pπ2
) := Π(π2), ∀π2 ∈ supp(Π). In words, π1 induces the interim

beliefs that each will later become the prior of some second-period experiment (pπ2
).

2. The second-period experiment: given each interim belief pπ2
, the corresponding second-

period experiment induces random posterior π2.

Then, at the end of period two, the posterior belief has distribution EΠ[π2], i.e. EΠ[π2]

is “produced” by Π. We define the map Ψ that characterizes cost minimization using

two-step contingent plans.

Definition 1. The two-step sequential learning map Ψ : C → C is defined by:

Ψ (C)(π) := inf
EΠ[π2]≥mpsπ

C(π1) +EΠ [C(π2)] .11

9
R+ := R+ ∪ {+∞}. Unless otherwise noted, we adopt the convention that +∞ = +∞ when comparing

unbounded functions.
10Π has finite non-degenerate support means supp(Π) \R◦ is finite. The finiteness restriction is purely

a technical restriction for guaranteeing measurability in various places of the analysis. The restriction is
without loss if an additional continuity assumption is imposed on C.
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Ψ (C) characterizes the minimal total expected cost of two-step contingent plans that

acquire weakly more information than the target output C. Note that by the construction,

0 ≤ Ψ (C)(π) ≤ C(π); hence, Ψ maps into C. By imposing the restriction EΠ[π2] ≥mps π,

we implicitly assume the free disposal of information. An information cost is sequential
learning-proof if it is a fixed point of Ψ ; namely, under direct cost C, acquiring informa-

tion in two steps is never strictly better than doing so in one shot.

Definition 2 (SLP). C ∈ C is Sequential Learning-Proof (SLP) if Ψ (C) = C.

Next, we extend the two-step contingent plans to the contingent plans with arbitrary

lengths to capture fully flexible sequential information acquisition. Intuitively, by ap-

plying Ψ to Ψ (C), which is already optimized in two steps, we optimize over “four-step”

contingent plans. Analogously, Ψ n(C) gives the optimal total cost of “2n-step” informa-

tion acquisition, and converges to the infinite horizon limit as n→∞. In what follows,

we define this limit as the outcome of fully flexible cost minimization.

Definition 3. The sequential learning map Φ : C → C is defined by:

Φ(C)(π) := lim
n→∞

Ψ n(C)(π).

Note that the limit is always well defined as (Ψ n(C)(π)) is a non-negative and decreas-

ing sequence. We call Φ(C) the indirect cost (function) generated by C.

Definition 4 (Indirect Cost). Φ(C) ∈ C is the Indirect Cost generated by C ∈ C. The set of all
indirect cost functions {Φ(C) | C ∈ C} is denoted by C∗.

We note that Φ satisfies three natural properties (formal analysis relegated to Ap-

pendix I). It is (i) isotone: C ⪯ C′ implies that Φ(C) ⪯ Φ(C′), (ii) positively homogenous of
degree 1: Φ(αC) = αΦ(C) for all α ≥ 0, and (iii) concave: Φ(αC + (1−α)C′) ⪰ αΦ(C) + (1−
α)Φ(C′) for all C,C′ ∈ C and α ∈ [0,1]. These three properties are familiar from producer

theory, where Φ(C) corresponds to the firm’s cost function for producing outputs π ∈ R
at input prices C ∈ C.

A key element of our framework is that the information acquisition process can take

arbitrarily many steps and contingencies, and one might wonder how restrictive such

flexibility is. Our model excludes settings where time is costly (i.e., R◦ has a non-zero

cost) and the settings with non-stationary restrictions on information (i.e., the primitive

cost function is time-dependent). In Section 6.2, we extend our model to more general

settings that allow arbitrary restrictions on the sequential learning process, and provide

minimal sufficient conditions for our main results.
11If supp(Π)∪ {π1} 1 dom(C), C(π1) +EΠ [C(π2)] =∞.
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2.2 Illustrative Example
We illustrate the ideas of contingent plans and indirect costs by introducing the fol-

lowing running example.

Example 1 (Gaussian learning)

Information and direct cost: The unknown state θ ∈ {0,1}. ∀ψ ∈ (0,∞), let sψ denote a signal

with additive normal noise with precision ψ:

sψ = θ +N
(
0, 1
ψ

)
.

The direct cost of acquiring sψ is f (ψ), which satisfies f (0) = 0, f ′(0) > 0, f ′′(ψ) > 0.

A simple contingent plan: Let sψ/2 and s′ψ/2 denote two (conditionally independent) signals

each with precision ψ
2 . Consider a simple two-period contingent plan: in the first stage,

acquire sψ/2 and induce the Bayesian random posterior π1. Then, in step two, following

any interim belief, acquire s′ψ/2 and induce the Bayesian random posterior π2.12

By acquiring the two signals and observing the mean of them 1
2(sψ/2 + s′ψ/2) = θ +

N
(
0, 1
ψ

)
, signal sψ is “produced” at cost 2f (ψ/2) which is strictly lower than f (ψ), i.e.,

sequential learning strictly benefits the DM. Of course, this contingent plan is not nec-

essarily optimal; hence, letting πψ be the random posterior induced by sψ given some

prior,

Ψ (C)(πψ) ≤ 2f
(ψ

2

)
.

We can apply the argument again and produce sψ using the same contingent plan, but this

time paying the cost of Ψ (C). As a result, Ψ 2(C)(πψ) ≤ 2Ψ (C)(πψ/2) ≤ 4f (ψ/4). Applying

the argument recursively leads to

Φ(C)(πψ) = lim
n→∞

Ψ n(C)(π) ≤ lim
n→∞

2nf (2−nψ) = f ′(0) ·ψ.
A sequential learning strategy: Following the previous step, one might wonder if one could

produce an arbitrary random posterior via “splitting” the signal. The answer is yes. We

formalize such a strategy of acquiring many asymptotically uninformative signals — a

diffusion process ⟨zt⟩ defined by: dzt = θdt+ dWt, where Wt is a Wiener process. Observe

that per dt unit of time, dzt
dt ≈ θ + 1

dtN (0,dt) = sdt. Therefore, the flow cost of observing

the signal for dt unit of time is f (dt)
dt

dt→0−−−−−→ f ′(0).

An important observation by Morris and Strack 2019 is that by choosing a suitable

stopping time τ , zτ produces any random posterior π ∈ ∆[0,1]. Moreover, for any such

stopping time, the total flow cost is f ′(0)E[τ] ≡ f ′(0) · CWald. Therefore, the Wald cost

12Formally, the constructed contingent plan has infinite support, which is not permitted. However, it is
inconsequential as one can “sandwich” the contingent plan with finite-support ones with converging costs.
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gives the “indirect cost” of a general signal via only “incremental evidence”. Since such a

strategy is not necessarily optimal,

Φ(C) ⪯ f ′(0) ·CWald.

Optimal sequential learning strategy: We claim without a proof that the inequality above

holds as equality: Φ(C) = f ′(0) ·CWald. The proof will be straightforward once we estab-

lish several key properties of indirect costs in Section 3. This immediately implies that

learning via incremental evidence is indeed the optimal sequential learning strategy in

this example. In Section 4, we utilize this observation to obtain a general characterization

of the sequential learning map Ψ .

3 The Indirect Cost of Information
In this section, we characterize the set of indirect cost functions C∗. Evidently, every

fixed point of Ψ is the indirect cost of itself, hence an indirect cost. In Section 3.1, we

show that being the fixed point of Ψ (sequential learning-proof) is not only sufficient

but also necessary for a cost to be indirect. In Section 3.2, we show that when restricted

to Regular cost functions, a cost is indirect if and only if it has a uniformly posterior

separable (UPS) representation.

3.1 Indirect Cost and Sequential Learning-Proofness
It is straightforward that an SLP cost is indirect (it is its own indirect cost), because

SLP implies Φ(C) = lim
n→∞

Ψ n(C) = C. SLP is also clearly a sufficient condition for the

following two weaker axioms:

Axiom 1 (Monotone). C ∈ C is Monotone if ∀π ≤mps π′, C(π) ≤ C(π′).

Axiom 2 (Subadditive). C ∈ C is (Sequentially) Subadditive if ∀ finite support Π, C(EΠ[π2]) ≤
C(π1) +EΠ [C(π2)].

Monotonicity and subadditivity are weaker than SLP because the violation of either

axiom directly provides a feasible two-step contingent plan that improves the direct cost.

Nevertheless, Theorem 1 shows that the seemingly non-nested notions are equivalent.

Theorem 1. For every C ∈ C,

C ∈ C∗ ⇐⇒ C is SLP ⇐⇒ C is Monotone and Subadditive.

Proof. See Appendix A.1.

Theorem 1 establishes two equivalent characterizations of indirect cost. The first

equivalence is the analogy of the principle of dynamic programming: full sequential
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optimality can be equivalently verified by checking single deviations (two-step contin-

gent plans). Therefore, the SLP cost functions are justified by two distinct modeling

motivations: (i) the desire to model applications where flexible sequential information

acquisition is feasible (e.g. modeling a firm conducting A/B testing), and (ii) the desire

to write a static information acquisition model that is internally consistent, i.e., robust to

potential sequentiality that is not observable by the modeler (e.g. modeling a cognitive

task with internal information processing). The second equivalence further decomposes

the single deviation into two independent operations. Monotonicity captures the DM’s

ability to freely dispose of information. Subadditivity captures the decomposition of ex-

periments into two steps. Monotonicity and subadditivity are simple and economically

interpretable properties that lead to properties commonly studied/assumed in the litera-

ture. Theorem 1 implies that they are exactly the context-free implications of sequential

optimality for reduced-form cost functions. A direct corollary of Theorem 1 is a varia-

tional characterization of Φ :

Corollary 1.1. For every C ∈ C, the indirect cost Φ(C) = max {C′ ∈ C | C′ ⪯ C and C′ is SLP}.

Proof. Theorem 1 implies that Φ(C) is SLP, and Φ(C) ⪯ C by definition. Moreoever, for

every SLP C′ ⪯ C, we have C′ = Φ(C′) ⪯ Φ(C) because C′ is SLP and Φ is isotone.

Remark 1. Theorem 1 has a few notable implications for the indirect cost of information, which
we summarize here (details are in Appendix I):

• Every Subadditive C ∈ C is Convex: for any π,π′ ∈ R with the same prior and α ∈ [0,1],
αC(π)+ (1−α)C(π′) ≥ C(απ+(1−α)π′).13 Thus, every SLP cost function is Monotone and
Convex. This is natural, as these two properties characterize optimal one-shot information
acquisition (Caplin and Dean 2015; Oliveira et al. 2017).

• The space of indirect costs C∗ is a convex cone and closed under suprema, i.e., for any D ⊆ C∗,
the cost function C(π) := sup{C′(π) | C′ ∈ D} is also in C∗. Thus, we can generate new
indirect costs from conical combinations and suprema of existing ones.

3.2 Foundations for Uniform Posterior Separability
A special class of SLP cost that is particularly useful in applications is the class of

uniformly posterior separable (UPS) costs introduced by Caplin, Dean, and Leahy (2022). In

this section, we show that UPS costs are fully micro-founded by sequential optimization

under an additional local differentiability condition. The following definition of UPS

slightly generalizes the standard one by allowing for a partial domain.

13This is the implication of Axiom 2 when π1 is uninformative, and Π simply randomizes over π2.
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Definition 5 (UPS). C ∈ C is Uniformly Posterior Separable (UPS) if there exists a convex
function H : ∆(Θ)→R∪ {+∞} such that C = CHups, where CHups ∈ C is defined as

CHups(π) := Eπ[H(q)−H(pπ)], ∀π ∈ ∆(dom(H)).14

When dom(H) = ∆(Θ), we say that C is Strongly UPS.15

It has been proved that strong UPS is equivalent to the “chain-rule property”, or se-

quential additivity (Zhong (2022, Theorem 3)). We prove in Proposition 1 that the equiv-

alence extends to more general UPS functions as well.

Proposition 1. For any open convex W ⊆ ∆(Θ) and C ∈ C with dom(C) = ∆(W )∪R◦,

C is UPS ⇐⇒ C is (Sequentially) Additive: ∀Π ∈ ∆(R), C(EΠ[π2]) = C(π1) +EΠ [C(π2)] .

Proof. See Appendix D.1.

Proposition 1 hints a close relation between UPS and sequential learning, as the ad-

ditivity property is a strengthening of the subadditivity property beared by any indirect

cost per Theorem 1. This relation is fully explored in Theorem 2.

We begin with an additional technical assumption that enables us to take “first deriva-

tives” of cost functions. Two preliminary definitions are in order. First, for any π ∈ R and

α ∈ [0,1], the α-dilution of π is the random posterior α ·π := απ + (1 −α)δpπ obtained by

mixing π with the degenerate random posterior (at the prior pπ). Second, a divergence is a

mapD : ∆(Θ)×∆(Θ)→R+ such thatD(p | p) = 0 for all p ∈ ∆(Θ). IfD(· | p) is differentiable

at q, we denote its gradient by ∇1D(q | p) ∈R|Θ|.

Definition 6 (Regular). C ∈ C is Regular if there is a divergence D such that

lim
α↘0

C(α ·π)
α

= Eπ[D(q | pπ)] ∀π ∈ dom(C), (1)

and both D(q | p) and the gradient ∇D1(q | p) are (well-defined and) jointly continuous on
relint(dom(D)).16 We call any such divergence D a derivative of C and denote DC :=D.

In words, a cost function is Regular if it satisfies two conditions. First, (1) requires that

C be Gateux differentiable at every δp ∈ R◦ in the direction of any π ∈ dom(C)∩R(p), with

the derivative DC representing the “marginal cost” of increasing the probability of gen-

erating π away from α = 0. Second, the derivative DC itself is continuously differentiable

14Implicitly, we define CHups(π) := 0 for all π ∈ R◦ and CHups(π) := +∞ for all other π.
15The original notion of UPS introduced by Caplin and Dean 2013 corresponds to the case where C/H

has full domain (renamed to strong UPS by Caplin, Dean, and Leahy 2019). We adopt the terminologies
that are consistent with Caplin, Dean, and Leahy 2019.

16relint denotes the relative interior.
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in the posterior. We interpret Definition 6 primarily as a technical assumption made for

tractability. In particular, nearly all models of information cost in the literature satisfy

Definition 6 (we highlight one exception in Section 5.2).

Theorem 2. For any open convex W ⊆ ∆◦(Θ) and C ∈ C with dom(C) = ∆(W )∪R◦,

C is SLP and Regular ⇐⇒ C = CHups for some convex H ∈ C1(W ).

Proof. See Appendix A.2.

The proof consists of three main steps. First, we show (in Lemma 2) that every SLP cost

is linear in the probability of running an experiment, i.e., satisfy the following property

(introduced by Pomatto, Strack, and Tamuz 2023):

Axiom 3 (Dilution Linear). C(α ·π) = αC(π) for every π ∈ dom(C) and α ∈ [0,1].

Consequently, every Regular SLP cost C equals the expectation of the divergence DC , i.e.,

is Posterior Separable (Caplin, Dean, and Leahy 2022). The second step of the proof then

shows that a Posterior Separable cost is SLP if and only if the divergence that defines it

satisfies an “average-case” version of the triangle inequality that defines metric distances.

For the third and final step, a calculus exercise shows that the only differentiable diver-

gences satisfying this inequality are Bregman divergences.

Theorem 2 provides an optimality-based foundation for using UPS cost functions in

applications. UPS information cost is the only “tractable” (Regular) functional form a

modeler can use to write a static model of information acquisition that subsumes se-

quential optimality or is internally consistent, independent of the specific context of

the application. This foundation is orthorgonal to various axiomatic foundations for the

UPS model in the literature (Denti 2022; Caplin, Dean, and Leahy 2019; Oliveira 2019;

Mensch 2021), which are agnostic about where such reduced-form cost functions “come

from”.

4 The Sequential Learning Map
In this section, we characterize the sequential learning map. We begin by concluding

Example 1 and proving that in the example, the cost of diffusion signals indeed charac-

terizes the true indirect cost.

Example 1 (Gaussian learning–continued)

Recall that we derive the “indirect cost” of information when only diffusion signals

are employed: f ′(0) ·CWald. We conclude that it is an upper bound for the indirect cost
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Φ(C) ⪯ f ′(0) ·CWald. Observe that CWald is SLP/UPS and for all πψ, f ′(0) ·CWald(πψ) ≤ f (ψ)

due to the convexity of f . Thus, Φ(C) ⪰ Φ(f ′(0) ·CWald) = f ′(0) ·CWald. Combining these

inequalities yields Φ(C) = f ′(0) ·CWald.

Example 1 hints that the direct cost of diffusion-type experiments, namely, experi-

ments that only shift the posterior belief locally crucially determines the indirect cost.

Naturally, two questions arise for the general setting:

1. Can a general indirect cost be bounded by the cost of analogous diffusion signals?

2. Under what condition the diffusion signals are optimal and the bound is tight?

In what follows, we provide the complete answers to the two questions, which guided

us toward a general characterization of the sequential learning mapping. To begin, we

formally define the cost of diffusion-type signals, i.e. the cost of incremental evidence.

4.1 The Cost of Incremental Evidence
A piece of incremental evidence, like an infinitesimal diffusion signal, shifts the pos-

terior belief only locally. Following this logic, we first define a modified direct cost that

permits only random posteriors with local supports. For any C ∈ C, let ∆C := {pπ ∈ ∆(Θ) |
∃π ∈ dom(C)\R◦} denote the set of priors at which some nontrivial experiment is feasi-

ble, and let Ω(C) denote the collection of all open covers of ∆C .17 For every O ∈Ω(C), we

define the modified direct cost C|
O
∈ C as

C|
O

(π) :=


C(π), if supp(π) ⊆O ∈O

0, if π ∈ R◦

+∞, otherwise.
This definition modifies C by restricting its domain to experiments that move beliefs

within some neighborhood O ∈ O. We are interested in the limit with infinitesimally
incremental evidence, i.e. fine coverings.

Definition 7. The incremental evidence sequential learning map ΦIE : C → C is defined as

ΦIE(C) := sup
O∈Ω(C)

Φ(C|
O

). (IE)

Lemma 1. For every C ∈ C, ΦIE(C) is a well-defined indirect cost, i.e., ΦIE(C) ∈ C∗.

Proof. See Appendix E.1.

17That is, every O ∈Ω(C) is a collection of open sets O ⊆ ∆(Θ) such that ∪O∈OO ⊇ ∆C .
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The supremum in (IE) is approached in the limit where all of the neighborhoods

in O become vanishingly small. Therefore, we interpret this limit as approximating a

continuous-time setting in which information is acquired by sampling from a diffusion

signal process à la Example 1 and Morris and Strack (2019), but with full control over the

signal’s drift and volatility.18

While (IE) defines the (indirect) cost of incremental evidence in an economically nat-

ural way, it is unclear how to actually calculate and analyze ΦIE(C). In Example 1, we

were able to tractably study the diffusion limit using differential approximations from

(stochastic) calculus. By analogy, we next define the (quadratic) kernel of an information

cost, which facilitates calculations by providing a tractable differential approximation for

the cost of incremental evidence in our non-parametric framework.

Definition 8 (Locally Quadratic). For any C ∈ C and W ⊆ ∆(Θ), we say that a (symmetric)
positive semi-definite matrix-valued function k :W →R

|Θ|×|Θ| is:

(i) An upper (quadratic) kernel of C on W if, for every p ∈W and ϵ > 0, there exists a δ > 0

such that for all π ∈ ∆(Bδ(p)),

C(π) ≤
∫
Bδ(p)

(q − pπ)⊤
(1
2
k(p) + ϵI

)
(q − pπ)dπ(q).

(ii) A lower (quadratic) kernel of C on W if, for every p ∈W and ϵ > 0, there exists a δ > 0

such that for all π ∈ R with pπ ∈ Bδ(p),

C(π) ≥
∫
Bδ(p)

(q − pπ)⊤
(1
2
k(p)− ϵI

)
(q − pπ)dπ(q).

(iii) A (quadratic) kernel of C on W if it is both a lower kernel and an upper kernel on W .

If C admits a kernel k on W , we say that C is Locally Quadratic on W and denote kC := k. In
each case above, we omit the qualifier “on W ” when ∆◦(Θ) ⊆W .

The kernel kC(p) represents the “local second derivative” of C at the degenerate ran-

dom posterior δp ∈ R◦, in the direction of any π ∈ R whose support is contained in an

infinitesimal neighborhood of p. Economically, kC provides a local quadratic approxima-

tion for the cost of a piece of incremental evidence, generalizing the “Itô expansion” for

the cost of a diffusion signal in Example 1. This approximation represents the “weighted

variance” of a random posterior, with kC determining the relative cost of moving beliefs in

18We do not formally prove convergence to the continuous-time limit. However, in Section 6.2 and
Appendix H, we show that our main results extend naturally to a continuous-time framework that includes
those studied in Morris and Strack (2019), Zhong (2022), and Hébert and Woodford (2023).
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different directions. We define the lower and upper kernels separately because, although

not every C ∈ C is Locally Quadratic, the lower/upper kernels exists very generally.

Intuitively, since the kernel kC measures the cost of incremental evidence under C, the

indirect cost of incremental evidence ΦIE(C) should correspond to “integrating” kC . We

establish below in Proposition 2 that, under certain regularity conditions, this intuition

can be made precise: for any convex function H : ∆(Θ)→R,

kC = HessH ⇐⇒ ΦIE(C) = CHups.

We say that kC is integrable if it is the Hessian of some convex H . Economically, inte-

grability corresponds to the “path-independence” property that all incremental learning

strategies are equally costly.19 When there are two states, every kernel is integrable (e.g.,

Morris and Strack 2019). When there are more than two states, this is no longer true

and calculating ΦIE(C) for non-integrable kC is much more involved. In what follows, we

primarily focus on direct costs with integrable kernels; in such instances, we will often

use ΦIE(C) and CHups as synonyms.

Remark 2. Without loss of generality, we henceforth normalize all upper/lower kernels k(p) to
k(p) := (I−1p⊤)k(p)(I−p1⊤), so that k(p)·p = 0. We also normalize the gradient and Hessian of
any function f : ∆(Θ)→R to satisfy ∇f (p) ·p = f (p) and Hessf (p) ·p = 0. This normalization
amounts to extending the quadratic form defined by k and function f from the simplex ∆(Θ)

to R
|Θ|
+ by homogeneity of degree 1 (HD1) and defining derivatives in the usual way.

4.2 Bounding the Sequential Learning Map
In this section, we provide the complete answer to Question 1: learning via incre-

mental evidence characterizes a global upper bound for Φ(C) and a local lower bound for

Φ(C). For technical reasons, we will occasionally impose the following condition:

Definition 9 (Strongly Positive). C ∈ C is Strongly Positive if there exists an m > 0 such that
C(π) ≥m ·Var(π) for all π ∈ R, where Var(π) := Eπ

[
∥q − pπ∥2

]
is the variance of π.

Theorem 3. For any C ∈ C and W ⊆ ∆(Θ), the following holds:

(i) If W is open and convex, H ∈ C2(W ), and HessH is an upper kernel of C on W , then

Φ(C)(π) ≤ CHups(π) for all π ∈ ∆(W ).

(ii) If C is Strongly Positive and k≫psd 0 is a lower kernel of C on W , then k is also a lower
kernel of Φ(C) on W .20

19Formally, integrability of kC implies (via Proposition 1) that ΦIE(C) is Additive.
20Here, k ≫psd 0 denotes that there exists an m > 0 such that q⊤k(p)q ≥ m for every p ∈W,q ∈ ∆(Θ), It is

easy to show that every Strongly Positive C ∈ C has lower kernels with this property.
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Proof. See Appendix B.1.

Theorem 3(i) shows that (integrable) upper kernels of the direct cost are sufficient

to characterize a global upper bound for the corresponding indirect cost.21 This up-

per bound is powerful because it applies even when non-incremental experiments are

extremely costly (or even infeasbile) under the direct cost. To prove this result, we ef-

fectively generalize the one-dimensional diffusion signals from Example 1 by explicitly

constructing incremental learning strategies that implement any π ∈ ∆(W ). Given such

strategies, we can then integrate the kernel to obtain the upper bound.

Next, Theorem 3(ii) shows that Φ(C) and C have the same lower kernels, despite the

fact that Φ(C) ⪯ C. In other words, sequential optimization cannot reduce the cost of

incremental evidence; the lower kernel of the direct cost yields a local lower bound for

the indirect cost. The intuition is simple if we temporarily disable “free disposal” of

information. In that case, since information only accumulates over time, any piece of

incremental evidence can only be decomposed into less informative pieces of incremental

evidence; since each of these pieces has a direct cost bounded below by the lower kernel,

the indirect cost of the original piece must also bounded below by the same lower kernel.

The formal proof deals with the more involved “free disposal” case.

Notably, the lower kernel of the direct cost is not sufficient to obtain a global lower

bound for the indirect cost, because the direct cost of non-incremental experiments might

be arbitrarily low. However, it does yield a global lower bound for the indirect cost if we

restrict attention to incremental learning strategies, i.e., consider ΦIE(C) rather than Φ(C).

In fact, the kernel of C fully characterizes ΦIE(C).

Proposition 2. For any open convex set W ⊆ ∆(Θ), strongly convex H ∈ C2(W ), and direct
cost C ∈ C with dom(C) ⊆ ∆(W )∪R◦, the following properties hold:

(i) If HessH is an upper kernel of C on W , then ΦIE(C) ⪯ CHups.

(ii) If HessH is a lower kernel of C on W , then ΦIE(C) ⪰ CHups.

(iii) If C is Locally Quadratic on W , then kC = HessH ⇐⇒ ΦIE(C) = CHups.

Proof. See Appendix E.2.

We note that Proposition 2(iii) can be viewed as an extension of Morris and Strack

2019 to settings with a general state space, general direct cost of incremental evidence,

and optimization over incremental learning strategies.
21Absent integrability, we have the analogous (but trivial) upper bound Φ(C) ⪯ ΦIE(C). Moreover, since

Φ(C) ⪯ C, the upper kernels of C must also be upper kernels of Φ(C), so the upper kernels of C always
provide a “local” upper bound for Φ(C).
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4.3 Determining the Sequential Learning Map
In this section, we provide the complete answer to Question 2: the bounds we obtain

from Theorem 3 are tight if and only if the direct cost satisfies the following property.

Axiom 4 (FLIEs). C ∈ C favors learning via incremental evidence (FLIEs) if C ⪰ ΦIE(C).

A cost function FLIEs if the total cost of producing an experiment through incremen-

tal learning is weakly lower than the cost of acquiring the experiment directly.

Theorem 4. For any open convex set W ⊆ ∆(Θ), strongly convex H ∈ C2(W ), and direct cost
C ∈ C that is Locally Quadratic on W and satisfies dom(C) ⊆ ∆(W )∪R◦,

C FLIEs and kC = HessH ⇐⇒ Φ(C) = CHups.

Proof. See Appendix B.2.

We interpret Theorem 4 as offering two characterizations. First, it characterizes the

domain of direct costs whose corresponding indirect costs are Regular: a Locally Quadratic

direct cost generates a Regular indirect cost if and only if the former FLIEs and has an inte-

grable kernel. Second, it fully determines the map Φ for the codomain of Regular indirect

costs, which are pinned down by the kernels of their direct costs.

The first characterization suggests a novel economic foundation for the UPS model.

An immediate implication of Theorem 4 is that the indirect cost of information is UPS if
and only if incremental learning is globally optimal and all incremental learning strate-

gies are equally costly. 22 This can help delineate the set of applications in which the UPS

model is economically reasonable. The following examples illustrate:

• Cognitive costs of attention: Following Sims (2003), UPS costs are often interpreted as

describing humans’ cognitive costs of processing available information (e.g., reading a

newspaper).23 In psychology and neuroscience, a leading theory of human attention is

the drift-diffusion model (DDM), which models the cognitive process as the sequential

sampling of diffusion signals (Ratcliff 1978; Ratcliff and McKoon 2008; Fudenberg,

Strack, and Strzalecki 2018). Theorem 4 suggests a bridge between these literatures:

the indirect cost of attention is UPS if (and only if) DDM-style sampling is the optimal

cognitive process (see also Hébert and Woodford 2023).

22If C FLIEs, then Φ(C) ⪰ [Φ ◦ΦIE](C) ⪰ ΦIE(C) because Φ is isotone and ΦIE(C) ∈ C∗. If Φ(C) ⪰ ΦIE(C),
then C FLIEs because C ⪰ Φ(C). Since Φ(C) ⪯ ΦIE(C) by construction, the claimed equivalence follows.

23See, e.g., Sims (2010), Matějka and McKay (2015), Hébert and Woodford (2021), and Caplin, Dean, and
Leahy (2022). Experimental evidence on perception tasks provides support for this interpretation (Dean
and Neligh 2023; Dewan and Neligh 2020; Denti 2022).
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• Statistical sampling: Consider the problem of testing a hypothesis by drawing samples

from a large population, e.g., political polling, market research, or clinical trials (Wald

1945; Arrow, D. Blackwell, and Girshick 1949). These applications almost perfectly fit

the setting of Example 1: FLIEs is satisfied and the indirect cost is the Wald cost.

• Research & development: IfC FLIEs, it is never strictly optimal to generate discrete belief

jumps. This property may be inappropriate for modeling industrial R&D or the process

of scientific research, as in these applications, learning often occurs through infrequent

but discrete “breakthroughs” that can be modeled as jumps of a Poisson signal process

(Che and Mierendorff 2019; Zhong 2022).

The second characterization suggests a methodological tool for analyzing the sequen-

tial learning map. Specifically, Theorem 4 allows one to calculate both (i) the indirect

cost function generated by a given direct cost and (ii) the set of direct costs that generate

a given indirect cost. We depict this methodology in Figure 3, where the solid arrows

represent the calculation of Φ and the dotted arrows represent the calculation of Φ−1. We

explore several applications of this tool in Section 5 below.

C Calculate
kernel kC

Is kC
Hessian?

kC = HessH,

ΦIE(C) = CHups
C FLIEs? Φ(C) = CHups

Φ(C) not UPS,
kΦ(C) = kC

Yes Yes

No No

Figure 3: Flow diagram for calculating direct/indirect cost.

Remark 3. The hypothesis that C is Locally Quadratic is “nearly” without loss of generality
for Theorem 4 in two respects: (i) minor variants of both directions hold without it, and (ii)
any C ∈ C for which Φ(C) = CHups can be “locally smoothed” into a Locally Quadratic C′ ∈ C
for which both directions hold exactly. See Corollary 6.1 in Appendix E.4 for formal details.

5 Applications: Reduced-Form Information Costs
In this section, we operationalize our framework by studying specific (classes of)

“reduced-form” information costs through the lens of optimization. Section 5.1 begins

with a few illustrative examples. In Section 5.2, we introduce two new indirect cost func-

tions that satisfy two properties that are important in applications: prior invariance and

constant marginal cost. In Sections 5.3 and 5.4, we fully characterize the relationship

between indirect cost and these properties, obtaining and resolving a trilemma.
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5.1 Illustrative Examples
We begin by demonstrating how our characterization of Φ−1 can clarify the implicit

economic assumptions that are imposed on the direct cost when one adopts a particular

functional form for the indirect cost.

Mutual Information. The benchmark rational inattention model (Sims 2003) is based

on the Mutual Information cost function (Shannon 1948), which we denote by CMI. In our

terminology, CMI is the Strong UPS cost function with potential and kernel

HMI(p) =
∑
θ∈Θ

p(θ) log(p(θ)) and kMI(p) = Diag(p)−1 − 11⊤, (MI)

where HMI is (negative) Shannon’s entropy and kMI is the Fisher information matrix. By

Theorem 4, a direct cost C ∈ C generates the indirect cost Φ(C) = CMI if and only if C ⪰
CMI and kC = kMI.

The following example demonstrates how our characterization of Φ can produce new

indirect costs (and provide new foundations for extant ones).

Aggregating Technologies. We posit a simple scheme to model acquiring information

from multiple “sources” that are informative about different “aspects” of the state. This

is the case, for instance, when sampling from multiple heterogeneous subpopulations,

obtaining news from differentially biased media outlets, or learning about the value of a

financial portfolio via both fundamental research about the assets and technical analysis

of market prices.24

Consider a finite collection of information costs {Ci} ∈ C, each representing the cost of

learning from one source. The direct cost of information is given byC(π) := f (C1(π), . . . ,CI (π)),

where f : RI+ → R+ is non-decreasing, satisfies f (0) = 0, and is continuously differen-

tiable. We interpret f as a “production function” that aggregates the source-specific costs

Ci , and which can encode general complementarities and substitutabilities among the

sources. We assume that each Ci is Locally Quadratic with kernel kCi = HessH i for some

strongly convex H i ∈ C2(∆(Θ)). It is easy to verify that kC =
∑
∇if (0)HessH i . Then, The-

orems 3 and 4 immediately implies:

Corollary 4.1. Let H :=
∑
i∈I ∇if (0)H i . Then,

Φ(C) ⪯ ΦIE(C) = CHups and kΦ(C) = HessH =
∑
i∈I
∇if (0)HessH i .

24For examples in the literature, see Myatt and Wallace (2012), Liang, Mu, and Syrgkanis (2022), Angele-
tos and Sastry (2024), and Hébert and La’O (2023).
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Moreover, if each Ci FLIEs and f is subdifferentiable at 0,25 then C FLIEs and Φ(C) = CHups.

Corollary 4.1 provides simple conditions under which the indirect cost Φ(C) is Regu-

lar and characterizes its functional form. Notably, optimization “smooths away” all non-

linearities in the production function, so Φ(C) is simply a weighted sum of the source-

specific indirect costs Φ(Ci). Two special cases are of particular interest:

Example 2 (Neighborhood-Based Costs)

Each i ∈ I represents a neighborhood of states Ni ⊆ Θ, where {Ni}i∈I covers Θ. For each

i ∈ I , let H i(q) := q(Ni)Gi(q(· | Ni)) for some strongly convex Gi : ∆(Ni) → R. Then the

indirect cost CHups in Corollary 4.1 is the neighborhood-based cost of Hébert and Woodford

(2021), where f ′i (0) is the marginal cost of learning within neighborhood Ni .

Example 3 (Pairwise Separable Costs)

Let I = Θ ×Θ, so that each i = (θ,θ′) is an ordered pair of states. For each such pair,

let H (θ,θ′)(p) := p(θ)φ
(
p(θ′)
p(θ)

)
for some (strongly) convex, C2-smooth, φ : R+ → R+ with

φ(1) = 0. Letting γθ,θ′ := f ′(θ,θ′)(0), the indirect cost in Corollary 4.1 is CHups, where

H(p) =
∑
θ

p(θ)
∑
θ′

γθ,θ′φ

(
p(θ′)
p(θ)

)
represents the expectation over true states θ of the cost of distinguishing between other

states θ′ , θ. These indirect costs are finite-state variants of the pairwise-separable costs
of Morris and Yang (2019). The case where φ(t) = − log(t) is of particular interest, as it

yields the Total Information cost function introduced in Section 5.2.2 below.

5.2 Normative Axioms
In this section, we introduce several novel SLP cost functions that satisfy context-

specific axioms that have been extensively studied in the literature. For this purpose, it

will be convenient to move between the formulations of information as Blackwell exper-

iments σ : Θ→ ∆(S) and random posteriors π ∈ R. To this end, let hB : (σ,p) 7→ π denote

the Bayesian map that takes experiment-prior pairs to their induced random posteriors.

5.2.1 Prior Invariance
For certain applications, it is natural to assume that the cost of information does not

vary with the DM’s prior beliefs. This restriction is particularly appropriate when mod-

eling the physical cost of conducting experiments (e.g., sampling from a population, con-

ducting R&D) or the pecuniary cost of purchasing information (e.g., in a market for data).

We formalize the prior invariance restriction as follows:
25Formally, f is subdifferentiable at 0 if f (x) ≥ ∇f (0) · x for all x ∈ RI+. This property is implied by, but

much weaker than, the assumption that f is convex.
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Axiom 5 (Prior Invariant). C ∈ C is (Weakly) Prior Invariant if C(hB(σ,p)) = C(hB(σ,p′)) for
any experiment σ and priors p,p′ ∈ ∆(Θ) with the same support, supp(p) = supp(p′).26

Despite its intuitive appeal, prior invariance is violated by many functional forms that

are commonly used in applications of flexible information acquisition. For instance, it is

known that any cost function in the Strong UPS class (which includes mutual informa-

tion) that is Prior Invariant must be identically zero. Nevertheless, prior invariance is

consistent with SLP once we relax Regularity.

Definition 10 (MLR). The Minimal Likelihood Ratio (MLR) cost function CMLR is defined as
follows. ∀π ∈ R,

CMLR(π) = Eπ [DMLR(q | pπ)] for DMLR(q | p) := 1− min
θ∈supp(p)

q(θ)
p(θ)

.

Equivalently, for all σ ∈ E and p ∈ ∆(Θ),

CMLR(hB(σ,p)) = 1−
∫
S

∧
θ∈supp(p)

σ (ds | θ).27

By construction, the MLR cost is Prior Invariant as it only depends on σ and the sup-

port of p. It is also SLP because DMLR is (i) convex in q and (ii) a quasi-metric and, in

particular, satisfies the triangle inequality. The former property implies that C is Mono-

tone, while the latter implies that C is Subadditive. 28

Example 4 (EAD)

In the special case of binary states, Θ = {0,1} and full support prior , the MLR cost reduces

to what we call the Expected Absolute Difference (EAD) cost function:

CEAD(π) :=
1

2pπ(1− pπ)
Eπ [|q − pπ|] ,

where q,pπ ∈ [0,1] are probabilities that θ = 1. To see why they are equivalent, observe

that DMLR(q|p) differs from |q(1)−p(1)|
2p(1)p(0) by 0.5−q(1)

p(1)p(0) , an affine function of q. Equivalently, the

EAD cost is the total variation distance between the state-contingent signal distributions

26This definition is slightly weaker than requiring complete prior-independence. This extra degree of
flexibility is a technical artifact of our belief-based formulation. In Section 6.1 below, we illustrate that full
prior-independence is easily incorporated into an enrichment of our framework.

27The meet (minimum) of two Radon measures µ∧ν is µ− (µ−ν)+ per the Hahn decomposition theorem.
The finite meet is defined accordingly. When S is finite, CMLR(hB(σ,p)) = 1−

∑
s∈S minθ∈supp(p)σ (s|θ).

28A quasi-metric is a map d : ∆(Θ) × ∆(Θ) → R+ that satisfies all the properties of a metric except for
symmetry: (i) d(q | p) = 0 iff p = q and (ii) d(q | p) + d(q′ | q) ≥ d(q′ | p) for all p,q,q′ ∈ ∆(Θ). It can be verified
that any expected quasi-metric divergence is SLP.
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σ (· | θ) ∈ ∆(S), i.e.,

CEAD(hB(σ,p)) =
1
2
∥σ (· | 1)− σ (· | 0)∥TV := sup

Borel E ⊆ S
|σ (E | 1)− σ (E | 0)|.29

The EAD cost has been used in Che and Mierendorff (2019, Section V.A) and Zhong (2022,

Proposition 2) to model the Prior Invariant flow cost of Poisson signals in optimal stop-

ping problems with continuous time and discounting.

5.2.2 Constant Marginal Cost
For some applications, it is natural to assume that the cost of drawing (conditionally)

independent samples from a population is linear in sample size. The following axiom,

first introduced by Pomatto, Strack, and Tamuz (2023), formalizes this intuitive notion in

a non-parametric way.

Axiom 6 (CMC). C ∈ C exhibits Constant Marginal Cost (CMC) if for arbitrary σ1,σ2,

C(hB(σ1 ⊗ σ2,p)) = C(hB(σ1,p)) +C(hB(σ2,p)) ∀p ∈ ∆(Θ),

where [σ1 ⊗ σ2](E1 ×E2 | θ) := σ1(E1 | θ)σ2(E2 | θ) for all (Borel) E1,E2 ⊆ S and θ ∈Θ.

CMC specifies that the cost of running any two experiments σ1 and σ2 together equals

the total cost of running them separately and simultaneously, i.e., (i) under the same prior
and (ii) without conditioning the choice of σ2 on the signal s1 generated by σ1. Therefore,

we interpret CMC as a “static” additivity, in contrast to the sequential additivity property

that characterizes UPS costs (Proposition 1). It is natural to ask whether these distinct

notions of additivity are compatible. We introduce a new class of cost functions that

provide an affirmative answer:

Definition 11 (Total Information). We call CTI ∈ C a Total Information cost function if there
exist non-negative coefficients (γθ,θ′ )θ,θ′∈Θ such that, for all π ∈ ∆(∆◦(Θ)),

CTI(π) = CHTI
ups (π) for HTI(p) :=

∑
θ,θ′∈Θ

γθ,θ′p(θ) log
(
p(θ)
p(θ′)

)
.

Equivalently, for arbitrary σ and p ∈ ∆◦(Θ) such that hB(σ,p) ∈ ∆(∆◦(Θ)),

CTI(hB(σ,p)) =
∑
θ∈Θ

p(θ)
∑
θ′∈Θ

γθ,θ′DKL(σ (· | θ) | σ (· | θ′)).

Total Information is of special interest for three reasons. First, it both is UPS and ex-

hibits CMC, where the latter can be seen from either (i) the additivity of KL divergence

for independent random variables or (ii) the fact that CTI is linear in the prior for each

fixed experiment. We interpret the conjunction of these properties as a strong form of

29When S is finite, CEAD(hB(σ,p)) = 1
2
∑
s∈S |σ (s | 1)− σ (s | 0)|.
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“process invariance,” whereby the overall expected cost of replicating a target experi-

ment is invariant to the way in which the acquired information is decomposed within or

across rounds. In other words, costs depend only on the total amount of information that

is generated, not on the process through which it is acquired.

Second, two limiting cases of Total Information encompass important alternatives to

the Mutual Information cost that have been proposed in the literature:

Example 5 (Wald)

In the special case of binary states, Θ = {0,1}, Total Information with symmetric coeffi-

cients (γ0,1 = γ1,0) reduces to the Wald cost from Morris and Strack (2019), which we have

already seen in Example 1. Total Information can be viewed as the natural generalization

of the Wald cost to multiple states and asymmetric coefficients.

Example 6 (Fisher Information)

Hébert and Woodford (2021) introduce the Fisher Information cost function as a way to

model “perceptual distance” in continuous-state settings, where the state space Θ̂ =

(θ,θ) ⊆ R is an interval and the DM can acquire experiments σ̂ : Θ̂ → ∆(S) satisfying

certain technical conditions. The Fisher Information cost of σ̂ is given by the expecta-

tion (under the DM’s prior) of the function θ̂ 7→ I (σ̂ | θ̂), where I (σ̂ | θ̂) is the Fisher

Information of σ̂ in state θ̂ (see, e.g., Cover and Thomas (2006) for a textbook treatment).

Total Information can be viewed as a finite-state generalization of the Fisher Informa-

tion cost, for two reasons. First, CMC is a defining property of the Fisher Information cost.

Second, using the standard fact that DKL

(
σ̂ (· | θ̂) | σ̂ (· | θ̂′)

)
= (θ̂−θ̂′)2

2 I (σ̂ | θ̂) + o((θ̂ − θ̂′)2,

we can approximate the Fisher Information cost using Total Information on a discretized

state space Θ = {θ1, . . . ,θ|Θ|} with θ = θ1 < θ2 < · · · < θn = θ and the specific coefficients

γθi ,θj = 1(j = i + 1)/(θi −θj)2, which are only nonzero for “adjacent” states.

Third, Total Information is closely related to the Log-Likelihood Ratio (LLR) cost func-

tions of Pomatto, Strack, and Tamuz (2023). In our notation, CLLR ∈ C is an LLR cost if

there exist non-negative coefficients (βθ,θ′ )θ,θ′∈Θ such that, for all σ ∈ E and p ∈ ∆(Θ),

CLLR(hB(σ,p)) =
∑

θ,θ′∈supp(p)

βθ,θ′DKL(σ (· | θ) | σ (· | θ′)). (LLR)

Total Information costs can be viewed as expectations over collections of LLR costs, one

for each possible state.30 Moreover, for any fixed prior p ∈ ∆(Θ), the Total Information

cost with coefficients γθ,θ′ equals the LLR cost with coefficients βθ,θ′ ≡ p(θ)γθ,θ′ .

30Formally, the Total Information cost with coefficients γθ,θ′ can be written as CTI(hB(σ,p)) ≡∑
θ∈Θ p(θ)C(θ)

LLR(hB(σ,p)), where each C(θ)
LLR is the LLR cost with coefficients β(θ)

τ,θ′ ≡ 1(τ = θ)γθ,θ′ .
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5.3 An Information Cost Trilemma
We have seen that these three important properties SLP, prior invariance, and CMC

have nontrivial intersections. This suggests modeling tradeoffs. In this section, we fully

characterize these tradeoffs by establishing a trilemma among the three properties.

For technical reasons, we first introduce two assumptions. First, we restrict attention

to C ∈ C that has rich domain: dom(C) ⊇ ∆(∆◦(Θ)). Second, we follow Pomatto, Strack, and

Tamuz (2023, Axiom 4) by augmenting CMC with a mild but complex continuity condi-

tion, which we refer to as PST-continuity. For simplicity, we embed it in the following

definition and relegate the formal details to Appendix I.31

Definition 12 (CMC©). C ∈ C is CMC© if it is CMC and PST-continuous (Appendix I).

We can now formally state the trilemma, which is depicted in Figure 2. Point (ii)

restates Theorem 1 in Pomatto, Strack, and Tamuz (2023) and is included here only for

completeness.

Theorem 5. For any non-zero C ∈ C with rich domain, the following properties hold:

(i) C is SLP and CMC© ⇐⇒ C is a Total Information cost.

(ii) C is Prior Invariant, CMC©, and Dilution Linear ⇐⇒ C is an LLR cost.

(iii) C is SLP and Prior Invariant −−⇀C is neither UPS nor CMC.
↽−− C is an MLR cost.

Consequently, no such C is SLP, Prior Invariant, and CMC.

Proof. See Appendix I.

We interpret Theorem 5(i) primarily as providing strong support for Total Informa-

tion in applications where both SLP and CMC are natural assumptions. A secondary

lesson is that CMC is typically not preserved under optimization. We further show in

Appendix I that essentially no prior-dependent (“Bayesian”) LLR direct cost—aside from

Total Information itself—yields an indirect cost satisfying CMC©.32 This suggests that,

when modeling the “reduced form” (SLP) cost of information, CMC may be best under-

stood as an emergent property of the optimization process (as in Example 1).

Next, Theorem 5(iii) identifies a strong tension between SLP and Prior Invariance.

First, the most prominent subclass of SLP costs—the UPS costs—does not intersect the

31Informally, Axiom 4 in Pomatto, Strack, and Tamuz (2023) imposes a very permissive form of continuity
on C(hB(·,p)) : E → R+ for each fixed p ∈ ∆(Θ). What we call PST-continuity combines this with continuity
of C(hB(σ, ·)) : ∆(Θ)→R+ along sequences of priors with common support, for each fixed σ ∈ E.

32Such costs are Strongly Positive whenever the coefficients βθ,θ′ (p) are bounded away from 0.
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class of Prior Invariant costs. By Theorem 2, this implies that any Prior Invariant SLP

cost must be non-Regular (e.g. the MLR cost). Second, a prominent sublcass of Prior

Invariant cost—those exhibiting CMC, which includes LLR costs and the more general

Renyi divergence costs from Mu et al. (2021)—does not intersect the class of SLP costs.

This implies that no cost function satisfies all three properties in the trilemma.

It is perhaps surprising, then, that the tension between SLP and Prior Invariance can

be reconciled at all. We illustrate this possibility using the MLR cost because of its con-

venient functional form.

5.4 A Resolution: Sequential Prior Invariance
We conclude from Theorem 5 that Prior Invariance is typically an overly restrictive

assumption for modeling “reduced form” (SLP) information costs. In particular, because

SLP costs arise from sequential expected cost-minimization, they “should” endogenously
depend on prior beliefs—even if the underlying direct cost function is Prior Invariant (as

in Example 1). This motivates the following novel class of cost functions:

Definition 13 (SPI). C ∈ C is Sequentially Prior Invariant (SPI) if C = Φ(C′) for some Prior
Invariant C′ ∈ C.

We view SPI cost functions as the natural modeling tool in most applications where

the literature has advocated for using Prior Invariant costs. Indeed, many real-world

settings in which information costs are physical or pecuniary (e.g., clinical trials) feature

at least some degree of flexible sequential learning (e.g., the design of multi-stage trials).

The class of SPI costs clearly includes all Prior Invariant SLP costs (e.g., the MLR

cost). It also includes the Wald cost, which is UPS and CMC© but not Prior Invariant

(Example 1). Thus, relaxing Prior Invariance to SPI delivers at least one resolution to the

information cost trilemma. In fact, the Wald cost provides the only such resolution:

Theorem 6. For any Strongly Positive C ∈ C with rich domain,

C is SPI and CMC© ⇐⇒ C is SPI, UPS, and Locally Quadratic ⇐⇒ |Θ| = 2 and C = γ ·CWald.

Proof. See Appendix C.1.

Theorem 6 offers two characterizations (see Figure 4). First, it uniquely resolves the

information cost trilemma: the Wald cost is the only SPI and CMC© cost function. Second,

it uniquely resolves the tension between Prior Invariance and UPS: the Wald cost, again,

is the only SPI and (smooth) UPS cost function.
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It is instructive to sketch the proof of Theorem 6. First, as is suggested by Example 1,

the Wald cost is SPI. 33 The more subtle direction is to show that CWald is the only SPI

and (smooth) UPS cost, which hinges on a novel “local” implication of (Sequential) Prior

Invariance: we show in Lemma 6 that for any Prior Invariant cost C, the “statistic kernel”

(the kernel represented in the space of statistical experiments)

κC(p) := diag(p)kC(p)diag(p)

is a constant matrix. Then, so does every SPI cost function due to kernel invariance

(Theorem 3). Basic calculus implies that the Wald kernel is the only kernel that is both

consistent with a constant κC and integrable, which directly implies Theorem 6.

SPI

CMC

UPS

Total InfoWald

Figure 4: Resolution of the trilemma

Wald

MLR General

TractableRe
al

ist
ic

(S
PI

)

(U
PS/Regular)

Total Info.
Mutual Info.

etc.

Figure 5: Modeler’s trilemma
We conclude by discussing the implications of Theorem 6. The resolution of the

information cost trilemma gives rise to a new “modeler’s trilemma” (Figure 5): there

is an inherent modeling tradeoff among realism (SPI), tractability (UPS/Regularity) and

applicability (general state space). The tension between realism and tractability can be

reconciled by adopting the Wald cost, but only when restricted to specific applications in

binary state settings, e.g., hypothesis testing. To obtain greater applicability, one neces-

sarily needs to sacrifice either tractability (e.g., adopting the irregular MLR cost) or some

of the realism (e.g., adopting the non-SPI Total Information or Mutual Information costs).

6 Extensions and Discussion
6.1 Beyond the Belief-Based Framework

For convenience, we have developed our framework using the standard belief-based
approach in which information structures are modeled as random posteriors. This ap-

proach makes two implicit assumptions on the cost of information: (i) all experiments

33The formal proof identifies a different prior invariant direct cost for CWald that is max{DKL(σ0 |
σ1),DKL(σ1 | σ0)}. In fact, this exercise characterizes the full set of Prior Invariant (and Locally Quadratic)
direct costs that generate the Wald cost.

28



that generate the same random posterior are assigned the same cost, and (ii) experiments

acquired in different rounds of a sequential procedure generate signals with conditionally

independent noise. In this section, we discuss the extent to which each assumption is eco-

nomically restrictive, how each assumption can be removed or relaxed, and the nuances

that arise from doing so. Formal details are in Appendix G.

From Beliefs to Experiments. The first assumption is irrelevant if the DM only cares

about the random posterior generated by the target experiment—e.g., if he uses the in-

formation to solve a canonical decision problem—because the optimization process im-

plicitly picks the cheapest experiment to induce each random posterior. However, it may

be consequential if the DM cares about the whole “informational content” of the target

experiment and his prior belief has partial support. For example, when the prior p = δθ
is concentrated on a single state θ, all experiments induce the trivial random posterior

δp ∈ R◦ and thus are assigned zero cost, even if they are very informative about the other

states θ′ , θ. This feature of the belief-based approach can create subtleties in applica-

tions to costly monitoring in games, where the state represents another agent’s action, the

prior represents that agent’s mixed strategy, and the DM needs to monitor for off-path

deviations (see, e.g., Ravid (2020) and Denti, Marinacci, and Rustichini (2022)).34

In Appendix G.1, we address this limitation by developing a richer experiment-based
framework in which (i) cost functions are defined directly on pairs of statistical experi-

ments and prior beliefs, and (ii) the MPS constraint in the definition of Ψ is replaced by a

Blackwell dominance constraint (which is more restrictive at partial-support priors). We

construct a scheme for mapping between the belief- and experiment-based frameworks,

which reveals that they are equivalent—and hence our results directly extend—whenever

the DM’s initial prior belief has full support. While the experiment-based framework

permits strictly richer behavior of the sequential learning map under partial-support pri-

ors, we show that Theorem 1 extends in the natural way. This provides a foundation for

particular experiment-based cost functions, such as:

• (Experiment-based) Total Information: For all experiments σ : Θ → ∆(S) and priors

p ∈ ∆(Θ),

KTI(σ,p) :=
∑
θ,θ′∈Θ

p(θ)γθ,θ′DKL (σ (· | θ) | σ (· | θ′)) .

Notably, KTI is Additive (hence, SLP) with respect to experiments (see Appendix G.1).

34More broadly, in the spirit of classical statistics, it may be conceptually desirable to decouple the “ob-
jective information” generated by an experiment from the “subjective uncertainty” embodied by the DM’s
prior (e.g., D. A. Blackwell (1951) does not even presuppose the existence of prior beliefs).
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• (Experiment-based) MLR Cost: For all experiments σ : Θ→ ∆(S) and priors p ∈ ∆(Θ),

KMLR(σ,p) := 1−
∫
S

∧
θ∈Θ

σ (ds | θ).

Notably, KMLR satisfies a stronger notion of Strong Prior Invariance: K(·,p) ≡ K(·,p′) for

all priors p,p′ ∈ ∆(Θ).

The functional forms KTI and KMLR can be used as reduced-form cost functions in appli-

cations to costly monitoring. For instance, Wong (2023) and Georgiadis and Szentes 2020

apply the experiment-based SLP cost functions, and KTI in particular, in this context.

Correlated Signals. The second assumption is more substantial, as conditionally corre-

lated noises may lead to the DM update his beliefs differently when observing statistical

experiments that induce the same random posterior.35 As a result, a given sequence of

random posteriors does not uniquely pin down the information that is acquired. Nev-

ertheless, conditionally dependent noises are readily nested by our framework via an

enrichment of the state space: one may extend the state space to include the potential

common components in noises just as a different source of information. Then, the cost

can be defined correspondingly to price those correlations properly. In Appendix G.2, we

develop a formal model that accommodates correlated noises via extension of the state

space.

6.2 Beyond Flexible Sequential Learning
Our baseline framework endows the DM with full flexibility to optimize over all con-

ceivable sequential learning strategies. While this is a useful benchmark, real-world DMs

may face additional constraints/frictions like delay cost or fatigue. In this section, we

posit a generalized optimization framework that can incorporate such constraints, bring-

ing our model closer to reality and helping to isolate the key forces driving our results.

We begin by defining a generalized notion of indirect cost.

Definition 14 (GSLM). Φ̂ : C → C is a generalized sequential learning map (GSLM) if it (i) is
isotone and (ii) satisfies Φ̂(CHups) = CHups for all convex H ∈ C2(∆(Θ)). For any C ∈ C, we call
Φ̂(C) the generalized indirect cost of C and say that C is generalized SLP if Φ̂(C) = C.

We interpret GSLMs as modeling “some optimization procedure,” in which the DM

may have less (or more) flexibility than in our baseline model. Definition 14 requires

35A simple illustrating example is s1 = θ+ϵ1 and s2 = ϵ2, where ϵi are state independent noises. Then, the
second experiment induces a degenerate random posterior. However, conditional on observing s1 already,
s2 may be very informative about θ if corr(ϵ1,ϵ2) is high (e.g. ϵ1 = ϵ2). Then, θ can be perfectly learned
with arbitrarily small cost (when ϵi are extremely noisy). We thank Ian Jewitt for raising this paradox.
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this procedure to satisfy two properties. The first, isotonicity, is a minimal consistency

condition on the strategy space and objective function. Second, we require all smooth,

strong UPS cost functions to be fixed points of Φ̂ . 36

This abstract notion of GSLM allows us to study a broad range of optimization pro-

cedures without explicitly modeling them. In Appendix H, we identify (minimal) suf-

ficient conditions on the GSLM under which each of main results generalizes. Table 1

summarizes these properties (which are self-explanatory) and generalized results; in Ap-

pendix H, we also explain how each sub-part of Theorems 5 and 6 generalizes. 37

Properties of GSLMs Definitions

Allows Direct Learning (ADL) Φ̂(C) ⪯ C
Allows Incremental Evidence (AIE) Φ̂(C) ⪯ ΦIE(C)

Exhausts Optimization (EO) Φ̂ = Φ̂ ◦ Φ̂
Generates Subadditivity (GS) Φ̂(C) is Subadditive

Results Hold under

Corollary 1.1 ADL & EO

Theorem 2 GS

Theorem 3 AIE

Theorem 4 ADL & AIE

Table 1: Properties of GSLMs (left) and extensions of main results (right).

Applications. In Appendix H, we develop three applications of the GSLM framework.

Restricted free disposal: In the first application, we consider two model variants with

restrictions on “free disposal” of information. First, we disallow free disposal altogether

(via the stronger constraint EΠ[π2] = π). The resulting GSLM satisfies all of the properties

in Table 1, but the indirect cost need not be Monotone—even if the underlying direct cost

is. Second, we study a variant of Φ that permits free disposal, but only in the final round
(after all information has been acquired). While this ensures that the indirect cost is

Monotone, the corresponding GSLM may violate EO and GS. We discuss the role of free

disposal in dynamic vs. static information acquisition problems (cf. Caplin and Dean

2015; Oliveira et al. 2017).

Continuous-time model: In the second application, we use GSLMs to explicitly model a

continuous-time information acquisition procedure and show that (a suitable version of)

Theorem 4 holds. In doing so, we unify and derive novel converses to the results from

several related continuous-time papers (Morris and Strack 2019; Zhong 2022; Hébert and

Woodford 2023).

36A sufficient (but not necessary) condition for this property to hold is that the map Φ̂ : C → C satis-
fies Φ(C) ⪯ Φ̂(C) ⪯ max{C,ΦIE(C)} for all C ∈ C, i.e., represents an optimization procedure that is more
constrained than our baseline model but is flexible enough to permit either direct learning or incremental
learning. We thus view it as an innocuous requirement.

37Theorem 1 does not appear in Table 1 because the characterization of SLP as “Monotonicity + Sub-
additivity” relies on the specific structure of our baseline Φ map. To extend the “lower SLP envelope”
characterization from Corollary 1.1, we use the notion of generalized SLP from Definition 14.
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History-dependent direct cost: We have assumed that the direct cost function does not

change over time. While this assumption is ubiquitous in models of dynamic information

acquisition,38 in reality the direct cost function may “increase” or “decrease” over time as

the DM develops “fatigue” or “expertise,” respectively (Dillenberger, Krishna, and Sad-

owski 2023). In the third application, we use GSLMs to embed into our framework direct

cost functions that can depend arbitrarily on the full history of acquired experiments and

realized signals. Under a mild form of “expertise,” the resulting GSLM satisfies GS, so

Theorem 2 holds. Under a mild form of “fatigue,” the resulting GSLM satisfies ADL and

AIE, so Theorems 3 and 4 hold.

6.3 Beyond Regularity
Theorem 4 fully characterizes the sequential learning map Φ under two smoothness

conditions: it restricts attention to (i) the domain of Locally Quadratic direct costs and (ii)

the co-domain of Regular/UPS indirect costs. The domain restriction is mild and made

only for technical convenience (see Remark 3). Thus, the main question left open by our

analysis is a characterization of Φ for the full co-domain of indirect costs. That is, how

might we extend Theorem 4 to the case in which Φ(C) is not Regular/UPS?39

While Theorem 2 suggests that the Regular case is most amenable to applications,

Theorems 5 and 6 indicate that it can be economically restrictive. In particular, “most”

SPI indirect costs—including the indirect LLR cost—are non-Regular. Consequently, to

the extent that Prior Invariance and CMC are natural properties for the direct cost of

information, it is economically important to look beyond Regular indirect costs.

By analogy to Theorem 4, it is natural to conjecture that the key to characterizing Φ

in general is finding a suitable local property of the direct cost C that is invariant under

Φ . Theorem 3(ii) shows that the lower kernels of C (which always exist) provide one

such invariant property. However, it is currently unclear how to leverage this fact into

a global characterization of Φ(C) when C violates FLIEs and/or its lower kernels are not

integrable. It therefore seems likely that tackling the non-Regular case requires new

techniques, the development of which is an exciting task for future research.

38See, e.g., Wald (1945), Arrow, D. Blackwell, and Girshick (1949), Moscarini and Smith (2001), Fuden-
berg, Strack, and Strzalecki (2018), Che and Mierendorff (2019), Morris and Strack (2019), Liang, Mu, and
Syrgkanis (2022), Zhong (2022), and Hébert and Woodford (2023).

39We note that Corollary 1.1 offers a fully general (variational) characterization of Φ , but not a practical
method to actually calculate Φ(C) or Φ−1(C∗) for general C ∈ C and C∗ ∈ C∗. A proper generalization of
Theorem 4 would both fully characterize Φ and deliver a tractable method to calculate these objects.
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Appendix

A Main Proofs for Section 3
A.1 Proof of Theorem 1
Proof. To prove the first equivalence, it suffices to show that Φ(C) is SLP. ∀π ∈ R, ∀Π s.t.

EΠ[π2] ≥mps π, by the definition of Φ , ∀ϵ > 0, there exists n s.t.

Ψ n(C)(π′) ≤ Φ(C)(π′) + ϵ

for all π′ ∈ {π1} ∪ Supp(Π) \ R◦ (note that such n exists because there are only finitely

many non-degenerate π′. For degenerate random posterior, the inequality holds trivially

for any n.). Therefore,

Φ(C)(π1) +EΠ(π′)[Φ(C)(π′)]

≥Ψ n(C)(π1) +EΠ(π′)[Ψ
n(C)(π′)]− 2ϵ

≥Ψ n+1(C)(π)− 2ϵ

≥Φ(C)(π)− 2ϵ

Since ϵ can be chosen arbitrarily, Ψ (Φ(C)(π)) ≥ Φ(C)(π). Therefore, Φ(C) is SLP.

Next, we prove the second equivalence. For any contingent plan Π such that EΠ[π2] ≥mps
π, Subadditive implies that C(π1) + EΠ[C(π2)] ≥ C(EΠ[π2]), which is greater than C(π)

by Monotone. Therefore, C ≤ Ψ (C) ≤ Φ(C); hence, C is SLP. If C is SLP, then π′ ≥mps π
defines a contingent plan for π (π1 = π′ and π2’s are trivial). Therefore, SLP implies that

C(π′) ≥ Φ(C)(π) = C(π). Any Π is a contingent plan for EΠ[π2]. Therefore, SLP implies

that C(π2) +Eπ[C(π2)] ≥ Φ(C)(EΠ[π2]) = C(EΠ[π2]).

A.2 Proof of Theorem 2
We begin with stating a few key lemmas for the proof of Theorem 2.

Lemma 2. If C ∈ C is Subadditive, then it is Convex (as in Remark 1) and Dilution Linear.

Proof. See Appendix D.2.

Recall that a cost function C ∈ C is Posterior Separable if there exists a divergence D

such that C(π) = Eπ [D(q | pπ)] for all π ∈ R (Caplin, Dean, and Leahy 2022).

Lemma 3. For any open convex W ⊆ ∆(Θ) and Posterior C ∈ C with dom(C) = ∆(W )∪R◦

and divergence D, C is Subadditive if and only if

Eπ [D(q | p)] ≤D(pπ | p) +Eπ [D(q | pπ)] ∀π ∈ ∆(W ) and p ∈W s.t. pπ≪ p. (2)

Proof. See Appendix D.2.
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Lemma 4. Let W ⊆ ∆◦(Θ) be open and convex, and let p ∈ W be given. If f : W → R
|Θ|

satisfies f (p) = 0 and Eπ [f (q)] = 0 for all finite-support π ∈ R(p), then there exists a matrix
A ∈R|Θ|×|Θ| such that Ap = 0 and f (q) ≡ −Aq on W .

Proof. See Appendix D.2.

Lemma 5. Let W ⊆ ∆◦(Θ) be open and convex. Let C ∈ C satisfy dom(C) = ∆(W )∪R◦, be
Subadditive, and be Posterior Separable with divergence D. If D satisfies

(q,p) 7→ ∇2D(q | p) is well-defined and continuous on dom(D) =W ×W, (3)

then C = CHups for some convex H ∈ C1(W ).

Proof. We prove the lemma in four steps.

Step 1: Linear prior-gradient. Since C is Subadditive and Posterior Separable, Lemma 3

implies that, for every π ∈ ∆(W ),

0 ≤ f π(p) :=D(pπ | p) +Eπ [D(q | pπ)−D(q | p)] ∀p ∈W.

Note that the functions f π :W →R+ and D(pπ | ·) :W →R+ are both minimized at p = pπ
(where they both equal 0). Furthermore, if |supp(π)| <∞, then f π is differentiable and its

gradient is given by

∇f π(p) = ∇2D(pπ | p)−Eπ [∇2D(q | p)] ,

where (3) ensures that ∇2D(· | p) is well-defined on W , and |supp(π)| < ∞ ensures that

we can interchange the order of differentiation and integration in the second term. Thus,

the necessary FOCs for minimization of f π and D(pπ | ·) at p = pπ yield, respectively,

∇f π(pπ) = ∇2D(pπ | pπ)−Eπ [∇2D(q | pπ)] = 0 and ∇2D(pπ | pπ) = 0. Hence,

Eπ [∇2D(q | pπ)] = 0 ∀ finite-support π ∈ ∆(W ).

Thus, for each pπ ∈W , applying Lemma 4 to the map ∇2D(· | pπ) :W →R
|Θ| delivers

∇2D(q | pπ) = −A(pπ)q ∀q ∈W (4)

for some matrix A(pπ) ∈ R|Θ|×|Θ| satisfying A(pπ)pπ = 0. Let A : W → R
|Θ|×|Θ| denote the

corresponding matrix-valued function.

Step 2: Directional posterior-derivatives. For any p,q ∈ W , the Gradient Theorem and

(4) deliver

D(q | p) =
∫ b

a
∇2D(q | r(x)) · r ′(x)dx = −

∫ b

a
A (r(x))q · r ′(x)dx (5)

for all a,b ∈ R and C1-smooth curves r : [a,b]→W such that r(a) = q and r(b) = p, where

r ′(x) ∈ T (∆) for all x ∈ [a,b].

Let q,p ∈W and y ∈ T (∆) be given. Let δ ∈ (0,1/2) be given and sufficiently small that

q + ηy ∈W for all η ∈ [−δ,δ], and consider any C1-smooth curve r : [0,1]→W for which
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(i) r(x) = q + (x − δ)y for all x ∈ [0,2δ] and (ii) r(1) = p.40 Note that r(δ) = q and r ′(x) = y

for all x ∈ [0,2δ]. Thus, for any ϵ′ ∈ (−δ,δ) and corresponding ζ := δ + ϵ′, the (two-sided)

directional derivative of D(· | p) at r(ζ) = q+ ϵ′y in direction y is given by
∂
∂ϵ
D(q+ ϵ′y + ϵy | p)

∣∣∣
ϵ=0

=
d
dt
D(r(t) | p)

∣∣∣
t=ζ

= − d
dt

[∫ 1

t
A (r(x))r(t) · r ′(x)dx

] ∣∣∣∣
t=ζ

= A(r(ζ))r(ζ) · r ′(ζ)−
∫ 1

ζ
A(r(x))r ′(ζ) · r ′(x)dx

= −
∫ 1

δ+ϵ′
A(r(x))y · r ′(x)dx,

where the first two lines follow from the definition of the curve r and the identity (5), the

third line follows from the standard Leibniz rule,41 and the final line follows from the

definition of ζ and the facts that A(q′)q′ ≡ 0 on W and r ′(ζ) = y. Then the second-order

(two-sided) directional derivative of D(· | p) at q in direction y as

∂2

∂ϵ′∂ϵ
D(q+ ϵ′y + ϵy | p)

∣∣∣
ϵ=ϵ′=0

= − d
dt

[∫ 1

t
A(r(x))y · r ′(x)dx

] ∣∣∣∣
t=δ

= A(r(δ))y · r ′(δ)

= y⊤A(q)y (6)

where the first line follows from the preceding display, the second line follows from the

Leibniz rule, and the final line follows from the definitions of the curve r (viz., r(δ) = q

and r ′(δ) = y) and the dot product.

Step 3: UPS Representation. We now show that C has a UPS representation. Let p∗ ∈W
be given and define the map H : W → R+ as H(q) := D(q | p∗). For all q,p ∈ W , define

L(q,p) :=D(q | p)−D(q | p∗), so that D(q | p) =H(q) +L(q,p).

We claim that, for every p ∈W , the map L(·,p) :W →R is affine, i.e., L(αq1+(1−α)q0) =

αL(q1,p) + (1 − α)L(q0,p) for all q0,q1 ∈ W and α ∈ [0,1]. Let p,q0,q1 ∈ W be given; the

q0 = q1 case is trivial, so let q0 , q1. Define y := q1 − q0 ∈ T (∆) and the map f : [0,1]→ R

as f (t) := L(q0 + ty,p). It follows from Step 2 that f is continuous on [0,1] and twice

40Such δ > 0 and curves r exist because W ⊆ ∆◦(Θ) and W is open and convex.
41The Leibniz rule applies because the function x 7→ d

dtA(r(x))r(t) · r ′(x)
∣∣∣
t=ζ

= A(r(x))y · r ′(x) ∈R is contin-
uous on [0,1]. In particular, for every x ∈ [0,1] and η ∈ [−δ,δ], (4) implies that ∇2D(q | r(x)) = −A(r(x))q
and ∇2D(q + ηy | r(x)) = −A(r(x))(q + ηy). For any given η ∈ [−δ,δ]\{0}, this implies that −A(r(x))y =
1
η (∇2D(q+ ηy | r(x))−∇2D(q | r(x))). Thus, (3) implies that x 7→ −A(r(x))y ∈ R

|Θ| is continuous on [0,1].
Continuity of r ′ : [0,1]→T (∆) concludes the argument.
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differentiable on (0,1). Moreover, since (6) implies that

∀t ∈ [0,1], p 7→ ∂2

∂ϵ′∂ϵ
D(q0 + ty + ϵy + ϵ′y | p)

∣∣∣
ϵ=ϵ′=0

is constant on W ,

it follows from the definition of L(·,p) that

f ′′(t) =
∂2

∂ϵ′∂ϵ
L(q0 + ty + ϵy + ϵ′y,p)

∣∣∣
ϵ=ϵ′=0

= 0 ∀t ∈ [0,1].

Thus, f (t) = tf (0) + (1− t)f (1) for all t ∈ [0,1] (e.g., Lemma 13 in Royden and Fitzpatrick

(2010, Ch. 6)). We conclude that every L(·,p) is affine (hence, continuous) on W .

It follows that, for every π ∈ ∆(W ), Eπ [L(q,pπ)] = L(pπ,pπ) and therefore C(π) =

Eπ [H(q) +L(pπ,pπ)]. Since C(δp) = 0 for all p ∈W , H(p) ≡ −L(p,p) on W . Since C(π) ≥ 0

for all π ∈ ∆(W ), H is convex. We conclude that C = CHups.

Step 4: Smooth Potential. It remains to show that H ∈ C1(W ). To this end, note that we

have shown in Step 2 that H(·) = D(· | p∗) has directional derivatives at every q ∈ W and

every direction y ∈ T (∆). Being that H is convex and W ⊆ ∆◦(Θ) is open, Theorem 25.2

and Corollary 2.5.5.1 in Rockafellar (1970) imply that H ∈ C1(W ), as desired.

With Lemma 5 in hand, we are in a position to prove Theorem 2 itself. To do so,

we adapt a mollification argument from Banerjee, Guo, and Wang (2005). Recall that

a map ξ : T (∆) → R+ is a (positive) mollifier if it satisfies the following conditions: (i)

ξ ∈ C∞(T (∆)), (ii) supp(ξ) is compact, (iii)
∫
T (∆)

ξ(y)dy = 1, and (iv) defining for every

ϵ > 0 the function ξϵ(·) := ϵ−|Θ|ξ(·/ϵ), limϵ→0ξϵ(y) = δ(y) for all y ∈ T (∆), where δ(y)

denotes the Dirac delta function on y.

Proof of Theorem 2. (⇐= direction) Let C = CHups with H ∈ C1(W ). Let DH (q | p) :=H(q)−
H(p) − ∇H(p) · (q − p) denote the Bregman divergence associated with H . Then C(π) ≡
Eπ [DH (q | pπ)] and ∇1DH (q | p) = ∇H(q)−∇H(p), which is jointly continuous on W . Thus,

C is Regular with derivative DH .

( =⇒ direction) We begin with some preliminaries. For each ϵ > 0, let BTa (0) := {y ∈ T |
∥y∥ < ϵ} denote the ball in T of radius ϵ centered at 0. Let a mollifier ξ : T (∆)→ R+ with

supp(ξ) ⊆ BT1 (0) be given. Then, for every ϵ > 0, supp(ξϵ) ⊆ BTϵ (0). Let p∗ ∈ relint(W ) be

given; by definition, there exists a δ > 0 such that Bδ(p∗) ⊆ relint(W ). For every η ∈ (0,1),

defineWη := {(1−η)p+ηp∗ | p ∈W }. It is easy to see thatWη is a convex subset of relint(W );

in particular, for every p ∈Wη , Bηδ(p) ⊂ relint(W ). Thus, for every p ∈Wη and ϵ ∈ (0,ηδ),

p+ y ∈ ri(W ) for all y ∈ supp(ξϵ).

Now, let C ∈ C be Regular with derivative D. Let η ∈ (0,1) and ϵ ∈ (0,ηδ) be given.
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Define the map Dϵ :Wη ×Wη →R+ as

Dϵ(q | p) :=
∫
T
D(q+ y | p+ y)ξϵ(y)dy,

which is well-defined and continuous by the preceding paragraph and continuity of D.

Changing variables from y to r := p+ y, we have

Dϵ(q | p) =
∫
∆(Θ)

D(q − p+ r | r)ξϵ(r − p)dr. (7)

We claim that Dϵ satisfies the hypotheses of Lemma 5 on Wη . First, we show that it satis-

fies (3) on this restricted domain. Denote the (continuous) integrand in (3) by f (q,p, r) :=

D(q − p + r | r)ξϵ(r − p). Since ∇1D : W ×W → R
|Θ| is continuous by hypothesis, we have

(q,p, r) 7→ ∇2f (q,p, r) is well-defined and continuous. Thus, by the fundamental theorem

of calculus, ∇2Dϵ : Wη ×Wη → R
|Θ| is well-defined and continuous, as desired. Next, we

show that it satisfies (2) for all π ∈ ∆(Wη) and p ∈ Wη . So, let π ∈ ∆(Wη) and p ∈ Wη be

given. For each y ∈ supp(ξϵ), define πy ∈ ∆(W ) as πy({q + y | q ∈ E}) := π(E) for all Borel

E ⊆Wη . Note that pπy = pπ + y ∈W . Then we have

Eπ [Dϵ(q | p)] =
∫
T
Eπ [D(q+ y | p+ y)]ξϵ(y)dy

=
∫
T
Eπy [D(q | p+ y)]ξϵ(y)dy

≤
∫
T

[
D(pπ + y | p+ y) +Eπy [D(q | pπ + y]

]
ξϵ(y)dy

=
∫
T

[
D(pπ + y | p+ y) +Eπ [D(q+ y | pπ + y]

]
ξϵ(y)dy

=Dϵ(pπ | p) +Eπ [Dϵ(q | pπ] ,

where the first line is by Fubini, the second line is by definition of πy , the third line is

because D satisfies (2) on W , the fourth line is by definition of πy , and the final line is by

Fubini. Thus, Dϵ satisfies (2) on Wη , as desired.

Thus, we can apply Lemma 5 toDϵ onWη to establish thatHη,ϵ(·) :=Dϵ(· | p∗) ∈ C1(Wη)

is convex and satisfies Eπ [Dϵ(q | pπ)] = C
Hη,ϵ
ups (π) for all π ∈ ∆(Wη). Fixing η and sending

ϵ→ 0, we have Dϵ(q | p)→D(q | p) for all q,p ∈Wη by construction of the mollifier. Thus,

for each η ∈ (0,1), Hη(q) := limϵ→0Hη,ϵ(q) = limϵ→0D(q | p∗) defines a convex function

Hη : Wη → R+. Moreover, H(q) := inf{H1/n(q) : n ∈ N} defines a convex function H :

W → R+ such that H(q) = Hη(q) for any η ∈ (0,1) such that q ∈Wη . Thus, for any finite-

support π ∈ ∆(W ), since supp(π) ⊆ W1/n for some n ∈N (being that W = relint(W )), we

have C(π) = Eπ[D(q | pπ)] = C
Hη
ups(π) = CHups(π). Since D is continuous and hence C is

weak∗ continuous on each ∆(Wη), a standard approximation argument implies that this
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representation extends to all π ∈ ∆(W ).

B Main Proofs for Section 4
B.1 Proof of Theorem 3
Proof. The statement about upper quadratic kernels.
Step 1. Prove the statement for π ∈ ∆(W ) with binary support. Let p = pπ and Supp(π) =

{q1,q2}. Since W ⊂ ∆(Θ)◦ is open, there exists interval [q′1,q
′
2] in ∆(Θ)◦ such that q1,q2 are

interior points of the interval. Let π̂ denote the (unique) random posterior with prior p

and support
{
q′1,q

′
2

}
.

∀ϵ > 0, by Definition 8, ∀p0 in [q′1,q
′
2], there exists a corresponding δ > 0 defining

HessH(p0) as an upper quadratic kernel. Then, Bδ/2(p0)◦’s constitute a collection of open

covers of the compact interval, and therefore, a finite cover exists. Let δ′ be the radius

of the smallest ball. WLOG, δ′ can be chosen smaller than the continuity parameter of

HessH on [q′1,q
′
2]. Now, construct a finite grid of size δ′ of [q′1,q

′
2] that contains p. Denote

the grid by G = (q̂i)
N
i=1. Let ξ be min ||̂qi − q̂i+1||. We prove by induction that there exists π′

s.t. Supp(π′) ⊂ G and pπ′ = p s.t. (i) Eπ′ [||q−p||2] is arbitrarily close to Eπ̂[||q−p||2] and (ii)

Φ(C)(π′) ≤ Eπ′ [H(q)−H(p)] + 2ϵEπ′ [||q − p||2].

We iterate on (P ,σ ) = (π′({q′1,q
′
2}),Eπ′ [||q − p||2]). Obviously, such π′ exists for (P =

0,σ = 0). Then, we show that for every π′ that satisfies the constraint (ii) with (P ,σ ), there

exists π′′ that satisfies the constraint (ii) and (P ′ ≥ P ,σ ′ ≥ σ + (1 − P )ξ2). Construct π′′

as a contingent plan with π1 = π′ and contingent on q̂i (i , 1,N ), π2 being the binary

experiment with support {q̂i−1, q̂i+1}. Therefore,

Φ(C)(π′′) ≤Φ(C)(π′) +
N−1∑
i=2

π′(q̂i)Φ(C)(π2 |̂qi)

≤Eπ′ [H(q)−H(p)] + 2ϵEπ′ [||q − p||2] +
N−1∑
i=2

π′(q̂i)Eπ2 |̂qi

[
(q − q̂i)T

1
2

HessH(q̂i) + ϵ)(q − q̂i)
]

≤Eπ′ [H(q)−H(p)] + 2ϵEπ′ [||q − p||2] +
N−1∑
i=2

π′(q̂i)Eπ2 |̂qi

[
H(q − q̂i) + 2ϵ||q − q̂i ||2

]
=Eπ′′

[
(H(q)−H(p)) + 2ϵ||q − p||2

]
.

The first inequality is from Φ(C) being SLP. The second inequality is from the induc-

tion hypothesis and the definition of upper quadratic kernel. Note that since δ′ ≤ δ/2,

Supp(π2 |̂qi) ⊂ Bδ/2(q̂i). Since q̂i lies in one of the open cover with radius δ, so does Bδ/2(q̂i).
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The third inequality is from ||HessH(q̂i)−HessH(q)|| ≤ ϵ for q ∈ Bδ/2(q̂i). On the other hand

Eπ′′
[
||q − p||2

]
=Eπ′ [||q − p||2] +

N−1∑
i=2

π′(q̂i)Eπ2 |̂qi

[
||q − q̂i ||2

]
≥ σ + (1− P )ξ2.

Therefore, we find a sequence of π′n, with (Pn,σn). By construction, Pn → 1 or otherwise

σn→∞, which is impossible since σn is bounded by Eπ̂[||q−p||2]. Then, for Pn sufficiently

close to 1, π′n ≥mps π. Since Φ(C) is Monotone,

Φ(C)(π) ≤ Φ(C)(π′n) ≤ Eπ′n[H(q)−H(p)] + 2ϵEπ′
[
||q − p||2

]
.

When ϵ,δ→ 0, the RHS converges to Eπ[H(q)−H(p)].

Step 2. Prove the statement for π ∈ ∆(W ) with finite support. We induce on the

support size and assume that the statement is proved for N − 1, Suppose Supp(π) =

{q1, . . . , qN }. Define π1 (qi) = π(qi) for i < N − 1 and π1

(
π(qN−1)qN−1+π(qN )qN

π({qN−1,qN })

)
= π ({qN−1,qN }).

Define π2 being degenerate contingent on qi , i < N−1 and π2(qN−1) = π(qN−1)
π({qN−1,qN })

, π2(qN ) =
π(qN )

π({qN−1,qN })
. Then, since Φ(C) is SLP,

Φ(C)(π) ≤Φ(C)(π1) +π({qN−1,qN })Φ(C)(π2)

≤Eπ1
[H(q)−H(p)] +π({qN−1,qN })Eπ2

[H(q)−H(Eπ2
[q])]

=Eπ[H(q)−H(p)].

Step 3. Prove the statement for general π ∈ ∆(W ). It is sufficient to show that there

exists finite support π′ ≥mps π with Eπ′ [H(q)−H(p)] arbitrarily close to Eπ[H(q)−H(p)].

Pick arbitrary η > 0. ∀p ∈ supp(π), since p ∈ W , it is contained in an open polygon

spanned by {qi(p)} ⊂W with diameter smaller than η.

The collection of the open polygons constitutes a collection of open cover of the com-

pact set Supp(π); hence, a finite cover exists, denoted by
({
qni

})N
n=1

. ∀p ∈Supp(π), there

exists a unique cover with smallest index n that contains p. Since
{
qni

}
are linearly inde-

pendent, there exists unique (πi) ∈ ∆(|Θ|) s.t.
∑
πiq

n
i = p. Define Π((πi)) = π(p). Then,

the compound experiment π′ = EΠ[π2] ≥mps π by construction and π′ has finite support.

Since Φ(C) is Monotone,

Φ(C)(π) ≤Φ(C)(π′) ≤ Eπ′ [H(q)−H(p)]

=Eπ[H(q)−H(p)] +Eπ

[
Eπ2(q′ |q)[H(q′)−H(q)]

]
≤Eπ[H(q)−H(p)] +

1
2

sup
q∈Conv(Supp(π′))

||HessH(q)|| × η2.

When η→ 0, it follows that Φ(C)(π) ≤ Eπ[H(q)−H(p)].

The statement about lower quadratic kernels.
We begin by showing that ∀ξ > 0 s.t. k − ξI ≥psd 0, there exists H ∈ C2∆(Θ) s.t. (i)
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C(π) ≥ Eπ[H(q)−H(pπ)] and (ii) HessH(p0) ≥psd k − ξI .
Since k is the lower quadratic kernel of C at p0, choose ε < ξ and choose δ as in

Definition 8 corresponding to ε at p0. ε,δ can be chosen sufficiently small that ∀p ∈ Bδ(p0)

(1− ε)(k − 2εI) ≥psd k − ξI. (8)

∀χ ∈ (0,δ), by Lemma 11, there exists Hχ ∈ C2∆(θ) s.t. (i) 0 ≤psdHessHχ(p) ≤psd k − ξI ,(ii)
HessHχ(p0) = k − ξI , and (iii) ||HessHχ(p)|| ≤ χ when p < Bχ(p0).

In words,Hχ is locally quadratic with Hessian matrix k−ξI at p0 and quickly becomes

linear towards the direction from p0 out of a small ball with radius χ around p0. It suffices

to verify that when χ is sufficiently small, the UPS function with potential Hχ is lower

than C. Pick δ′ ∈ (χ,δ). ∀π ∈ R, let p = pπ. Suppose p ∈ Bδ′ (p0),

Eπ[Hχ(q)−Hχ(p)] = Eπ[Hχ(q)−Hχ(p)−∇Hχ(p)(q − p)]

=
∫
q∈Bδ(p0)

Hχ(q)−Hχ(p)−∇Hχ(p)(q − p)dπ(q) +
∫
q<Bδ(p0)

Hχ(q)−Hχ(p)−∇Hχ(p)(q − p)dπ(q)

≤
∫
q∈Bδ(p0)

1
2

(q − p)T (k − ξ) (q − p)dπ(q) +
∫
q<Bδ(p0)

(χ · ||k − ξ ||+ 1
2
χ) · ||q − p||dπ(q)

≤
∫
q∈Bδ(p0)

(q − p)T
1
2

(k − ξ) (q − p)dπ(q) +χ · (||k − ξ ||+ 1)π(∆(θ) \Bδ(p0))

≤(1− ε)
∫
q∈Bδ(p0)

(q − p)T (
1
2
k − ε)(q − p)dπ(q) +χ · (||k − ξ ||+ 1)

∫
q<Bδ(p0)

||q − p||2dπ(q)

(δ − δ′)2 .

≤(1− ε)C(π) +χ · (||k − ξ ||+ 1)
C(π)

m(δ − δ′)2 .

The first inequality is from the bound on the Hessian matrix ofHχ. The second inequality

is from ||q − p|| ≤ 1. The third inequality is from Equation (8). The last inequality is from

k being a lower quadratic kernel of C at p0 (first term) and C being Strongly Positive

(second term). Fixing ε,δ and δ′ and picking χ s.t. χ·(||k−ξ ||+1)
m(δ−δ′)2 ≤ ε, the last line is lower

than C(π). Suppose p < Bδ′ (p0),

Hχ(q)−Hχ(p)−∇Hχ(p)(q − p)

≤1q∈Bδ′−χ(p)χ · ||q − p||2 + 1q<Bδ′−χ(p)χ(||k − ξ ||+ 1) · ||q − p||

≤1q∈Bδ′−χ(p)χ · ||q − p||2 + 1q<Bδ′−χ(p)χ(||k − ξ ||+ 1) · ||q − p||

≤1q∈Bδ′−χ(p)χ · ||q − p||2 + 1q<Bδ′−χ(p)χ(||k − ξ ||+ 1) ·
||q − p||2

δ′ −χ

=⇒ Eπ[Hχ(q)−Hχ(p)] ≤max
{
χ,
χ(||k − ξ ||+ 1)

δ′ −χ

}
· C(π)
m

Fixing ε,δ and δ′ and picking χ s.t. max
{
χ
m ,

χ(||k−ξ ||+1)
m(δ′−χ)

}
≤ 1, the last line is lower than C(π).
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Finally, because Eπ[H(q) −H(pπ)] is SLP and is below C, and since Φ is isotone, we

have that Φ(C)(π) ≥ Eπ[H(q) −H(pπ)]. Therefore, k − ξI is a lower quadratic kernel of

Φ(C) at p0. Now, ∀ϵ > 0, pick ξ = 1
2ϵ and pick parameter δ defining the lower quadratic

kernel k − ξI corresponding to 1
2ϵ,

Φ(C)(π) ≥
∫
Bδ(p0)

1
2

(q − p)T (k − ξI − ϵI)(q − p)π(dq).

B.2 Proof of Theorem 4
Proof. (⇒ direction) C andH have open domainW ⊂ ∆(Θ)◦. Theorem 3 implies that ∀π ∈
∆(W ), Φ(C)(π) ≤ CHups(π). ∀π < ∆(W ), Φ(C)(π) ≤∞ = CHups(π). Therefore, Φ(C) ⪯ CHups.

FLIEs and Proposition 2 implies ∀π ∈ ∆(W ), C(π) ≥ ΦIE(C) ≥ CHups(π). ∀π < ∆(W ),

C(π) =∞≥ CHups(π). Therefore, C ⪰ CHups. Applying Φ to both side, Φ(C) ⪰ CHups.
Combining both inequalities, Φ(C) = CHups.

(⇐ direction) Φ(C) = CHups implies that HessH is the kernel of Φ(C) on W . Theorem 3

implies that kC is a lower quadratic kernel of Φ(C) on W . Therefore, kC ≤psd HessH . On

the other hand, kC being the upper quadratic kernel of C implies HessH ≤psd kC ; hence,

HessH = kC . Then, Proposition 2 implies ∀π ∈ ∆(W ), ΦIE(C)(π) ≤ CHups(π). ∀π < ∆(W ),

ΦIE(C)(π) ≤∞ = CHups(π). Therefore, ΦIE(C) ⪯ CHups ⪯ Φ(C) ⪯ C.

C Main Proofs for Section 5
C.1 Proof of Theorem 6

Step 1. We begin with proving that the Wald cost is the indirect cost of a Prior Invari-

ant, Strongly Positive and Locally Quadratic direct cost. Let

C(hB(σ,p)) := max{DKL(σ0|σ1),DKL(σ1|σ0)}.
Evidently, C is Prior Invariant. To show that C is Locally Quadratic, it is sufficient to show

that DKL(σ0|σ1) and DKL(σ0|σ1) are Locally Quadratic and have the same kernel. Param-

eterize ∆(Θ)◦ using the probability of θ = 1; DKL(σ0|σ1) can be rewritten as Eπ[D(q|pπ)],

where D(q|p) = q
p log

(
q

1−q

)
. Direct calculation implies that its kernel is

D ′′qq(q|p)
∣∣∣
q=p

=
1

p2(1− p)2 .

Note that the term does not change when the indices of the two states are flipped. There-

fore, C is Locally Quadratic with kernel 1
p2(1−p)2 , same as CWald. It remains to prove

that C FLIEs, i.e. C ⪰ CWald. Note that H ∗(q) = pD(q|p) + (1 − p)D(1 − q|1 − p); thus,

∀σ,p, CWald(hB(σ,p) = pDKL(σ0|σ1) + (1 − p)DKL(σ1|σ0) ≤ max{DKL(σ0|σ1),DKL(σ1|σ0)} =

C(hB(σ,p)). Then, Theorem 4 implies that Φ(C) = CWald.
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Step 2. By Theorem 5, SPI and CMC© implies UPS. Therefore, to prove the theorem,

it suffices to show when C is SPI, UPS and Locally Quadratic, C must be proportional to

the Wald cost and |Θ| = 2. The proof invokes the following lemma:

Lemma 6. Suppose that W ⊆ ∆◦(Θ) is open and that C ∈ C is Strongly Positive and Prior
Invariant on W . For any p∗,p0 ∈W , if k(p∗)≫psd 0 is a lower kernel of C at p∗, then

k(p0) := diag(p0)−1diag(p∗)k(p∗)diag(p∗)diag(p0)−1 (9)

is a lower kernel of C at p0.

Proof. See Appendix F.2.

Let C0 be the Prior Invariant direct cost such that C = Φ(C0). Consider κC(p) :=

diag(p)kC(p)diag(p). Pick arbitrary p1,p2 ∈ ∆(Θ)◦. Since C ≤ C0, kC must be the lower

kernel of C0 as well. Then, Lemma 6 implies that diag(pi)−1κC(pj)diag(pi)−1 is also a

lower kernel of C0 at pi , for i, j ∈ {1,2}. Theorem 3 implies that diag(pi)−1κC(pj)diag(pi)−1

is a lower kernel of C at pi , i.e. ∀i, j ∈ {1,2}

diag(pi)
−1κC(pj)diag(pi)

−1 ≤psd diag(pi)
−1κC(pi)diag(pi)

−1

⇐⇒ κC(pj) ≤psd κC(pi)

⇐⇒ κC(pj) = κC(pi).

The first equivalent is due to diag(pi) being full rank. The second equivalent is from the

fact that i, j can be swapped. Therefore, wlog, κC(p) ≡ κ. There are two possible cases:

• Case 1: |Θ| > 2. Let Θ = {1, . . .n} and parameterized p ∈ ∆(Θ)◦ by its first n− 1 entries,

kC(p) = diag(p)−1κdiag(p)−1 =

 κijpipj
− κin
pi(1−

∑n−1
ℓ=1 pℓ)

−
κjn

pj(1−
∑n−1
ℓ=1 pℓ)

+
κnn

(1−
∑n−1
ℓ=1 pℓ)

2


ij

Since C is UPS and Locally Quadratic, kC(p) = HessH for some H ∈ C2(∆(Θ)◦). Note

that kC(p) is C∞ smooth. Therefore, ∀i , j, by the symmetry of cross-partial derivatives,

we have
∂3

∂p2
i ∂pj

H(p) ≡ ∂
∂pi

kC(p)ij ≡
∂
∂pj

kC(p)ii

⇐⇒ −
κij

p2
i pj

+
κin

p2
i (1−

∑n−1
ℓ=1 pℓ)

−
κjn

p2
j (1−

∑n−1
ℓ=1 pℓ)

+
κnn

pi(1−
∑n−1
ℓ=1 pℓ)

2
≡ 0

⇐⇒ κijp
2
n +κjnp

2
i −κin(pi + pn)pj =≡ 0.

By varying p, the final equality holds only when κij = κin = κjn = 0. This implies

that κ is a full rank diagonal matrix diag(z). Then, kCp · p = p−1 · z, which contradicts

kc(p) · p ≡ 0. Therefore, this case is impossible.

42



• Case 2: Θ = {0,1}. kc(p) · p ≡ 0 implies that κ11 = κ22 = −κ12, denoted by some γ > 0.

Therefore, kC(p) = γ

p2
1(1−p2

1)
= γ ·HessH ∗(p). Since C is UPS, C = γ ·CWald.
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