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Abstract

We design a multi-item ascending auction that is “approximately” optimal,
strategically simple, and robust to strategic and distributional uncertainties. Specif-
ically, the auction is rank-guaranteed—ex-post revenue exceeds the maximal sum of
the kth-highest bidder’s values when bidders play non-obviously dominated strate-
gies. Moreover, under distributional uncertainty of valuations, the rank guarantee
is asymptotically robustly optimal—it differs from the worst-case total surplus by
at most O( 1

N ).

1 Introduction

The online advertising sector is a dynamic engine of economic activity, generating
hundreds of billions of dollars annually through a simple mechanism: the auctioning
of advertising “slots”. Despite the critical role the auctions play, there’s a surprising
lack of theoretical groundwork to navigate the intricacies of auction design. This gap
in knowledge stems from a unique challenge: “not all slots are created equal”—bidders
often have complex, combinatorial preferences for different slots. For instance, YouTube
intersperses promotional videos at regular intervals within longer content. Here, some
advertisers might see value in the repetition of their ads, leveraging the complementarity,
while others may fear overexposure could lead to negative perceptions akin to “spam-
ming.” Similarly, in the layout of Facebook’s Marketplace, which presents content in two
columns, preferences can vary widely. Some advertisers might seek to blend seamlessly
with organic content by choosing single slots, whereas others might opt for an entire
row to ensure their message is fully conveyed. Current methodologies oscillate between
bespoke solutions designed for very specific preference frameworks—like the Generalized
Second Price Auction (GSP) employed by Yahoo & Google, suited for singular demand
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and vertically differentiated slots—and more universal models not primarily aimed at
revenue optimization, such as the Vickrey-Clarke-Groves auction (VCG) employed by
Meta.

This reality starkly contrasts with traditional auction theory, which often simplifies
to an extent that overlooks the nuanced realities of the markets. Iconic theories, such as
Myerson (1981), typically focus on the allocation of a single item, assuming independent
valuations among participants, along with both the auctioneer and bidders possessing
fully Bayesian rationality, underpinned by accurate, shared prior beliefs. However, none
of these assumptions hold water in the complex scenarios described earlier, highlighting
a clear disconnect. The development of a comprehensive theory for maximizing revenue
through auction design in these more intricate and generalized environments remains a
significant, unmet challenge.

In this study, we address the quadrilemma in multi-item auction design, achieving a
near-optimal resolution: it is possible to simultaneously attain four pivotal objectives—
optimal revenue, strategic simplicity, strategic robustness, and distributional robustness—
through a simple auction mechanism, given certain approximations. Our focus is on
scenarios where an auctioneer sells multiple items to several (potentially a large number
of) strategic bidders, each with private valuations. We introduce a multi-item variant of
the open ascending auction termed the (C)ombinatorial (As)sending (A)uction (CASA).
Prior to the auction, the auctioneer curates a menu of item bundles for allocation. With
the formal game theoretic form of the auction described in Section 2, this auction model
distills down to two straightforward principles:

1. Bidders are allowed to place binding bids (increase prices) on any assortment of
bundles from the menu, even if these selections overlap.

2. The auction concludes when bid prices stabilize, with the winning bids being those
that maximize the total selling price.

Our findings reveal that CASA meets the quadrilemma’s four criteria within certain
approximate bounds:

• Strategic Simplicity: It is obviously dominating to bid up to the true value as
long as there is a remaining surplus for a bidder given the current prices.

• Optimal Revenue: Any non-obviously dominated strategy profile yields an ex-
post revenue that is rank-guaranteed — achieving the maximal revenue when each
bundle within menu can be sold at the kth-highest value among all bidders.

• Distributional robustness: Neither the auction format nor the revenue guarantee
depends on a Bayesian prior on either the auctioneer’s side or the bidders’ side.
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• Strategic robustness: CASA is rank-guaranteed even with irrational or collusive
bidders.

Our second result is to quantify the kth-guarantee using canonical robust optimality
criteria. We took a worst-case analysis against distributional uncertainties, i.e. an ad-
versarial nature choosing the joint distribution of values to minimize expected revenue
against the mechanism (Carroll (2017)). We show that in the worst case, under a menu
M, the expected kth-guarantee approximates the total surplus (the 1st-guarantee) at the
rate of O

(
k|M|
N

)
, i.e. the kth-guarantee asymptotically achieves full surplus extraction

when the number of bidders is large relative to the menu size. We prove this by develop-
ing a novel statistical result that bounds the kth largest order statistic of a given sample
using a random element.

The kth-guarantee we derive reveals a novel trade-off between menu sufficiency and
approximation efficiency: a more complete menu achieves a higher benchmark total sur-
plus but increases k and |M|. Therefore, to close the approximation gap towards the
various goals, the key exercise is to reduce the menu size while maintaining the allocation
efficiency, leveraging further knowledge about the bidders’ preferences. We focus on a spe-
cific type of sufficient menus that improves approximation efficiency “for free”—menus
that achieve the same worst-case total surplus as the complete menu. Specifically, we
show that when the bidder’s preference exhibits canonical preference structures, without
loss of the benchmark total surplus, the size of menus can be reduced to be polynomial in
the number of items being auctioned and so is the convergence rate of revenue guarantee.
The result is summarized in Table 1.

Preference Sufficient Menu k

Weak substitutability Individual items O(M)
Weak complementarity Grand bundle 2

Partitional complementarity Partitional bundles O(M)
(with I different possible partitions) O(M × I)

Homogenous goods Menu of quantities O(M2)
(with I heterogenous types) O(MI)

Table 1: Sufficient menus

1.1 Related literature

(Approximately) optimal auction design Beyond the simple environment studied
in Myerson (1981) and Bulow and Klemperer (1996), solving for the exact optimal mech-
anism with confounding factors like multiple heterogeneous items, bounded distributional
knowledge or bounded rationality is generally intractable. Various alternative optimal-
ity notions have been proposed to make progress (see surveys by Roughgarden (2015)
and Hartline (2013)). Aggarwal and Hartline (2006) and Goldberg and Hartline (2001)
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obtained the “constant fraction” approximation in the auction of sponsored search and
digital goods. Following a broader literature on robust mechanism design pioneered by
Carroll (2017), authors studied “robustly” optimal auctions that maximize the distribu-
tional worst-case revenue. He and Li (2022) solved for the robustly optimal reserve price
in SPA, Zhang (2021) solved for the robustly optimal dominance strategy mechanism for
selling a single item. Bergemann et al. (2017) and Brooks and Du (2021) study auc-
tions that maximize the informational worst-case revenue. To our knowledge, the rank-
guarantee approximation is new, and has the unique feature of being more “adaptive”
than alternative notions: the expected rank-guarantee varies with the underlying value
distribution while the worst-case guarantee/maximal regret does not; the rank-guarantee
increases with the population of bidders while the constant fraction guarantee does not.
In Section 3, we apply the distributional robustness analysis similar to that of Carroll
(2017) and show that the rank-guarantee has an appealing worst-case performance.

Multi-item auctions Beyond the efficient Vickery auction, little clean results have
been established regrading multi-item auctions with combinatorial preferences. Jehiel
and Moldovanu (2001a) point out the vulnerability of efficiency under multidimensional
bidder information. Ausubel and Milgrom (2002) point out the poor revenue performance
and strategic vulnerability of the Vickery auction and propose simultaneous ascending
auctions with package bidding (SAAPB). The multi-item auction design problem has
also been extensively studied in the field of combinatorial auctions (see Cramton et al.
(2006) for a survey). This literature mainly focuses on (approximately) efficient auction
design and their computational complexity, which is orthogonal to our focus on rev-
enue performance and strategic simplicity. CASA is a simpler variant of the SAAPB
and theCombinatorial Clock Acution (CAA, see Ausubel et al. (2006) and Levin and
Skrzypacz (2016)) in that bidders simply raise the prices of the bundles, as opposed to
personalized prices in SAAPB and demand reporting in CCA. Our result overturned the
seminal impossibility theorem of Roughgarden (2014) due to a different notion of simplic-
ity: in the dynamic CASA, the strategic form game violates the simplicity requirement
of Roughgarden (2014); meanwhile, it is straightforward to identify obviously optimal
behavioral strategies in the extensive form game.

Implementation Under the extensive form of our auction format, we study outcomes
that survive the elimination of obviously dominated strategies. This approach is a hybrid
of the undominated-strategy implementation (Carroll (2014), Yamashita (2015), Jackson
(1992), Börgers (1991)) and obviously strategy-proof implementation (Li (2017)).

The rest of the paper is organized as follows. In Section 2, we introduce the kth-
guarantee and the CASA auction. In Section 3, we bound the worst-case performance
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of kth-guaranteed auctions under distributional uncertainties. In Section 4, we explore
specific preference structures under which CASA with simple menus performs as well as
the complete menu.

2 CASA and rank-gurantee

2.1 The environment

There is a set S of M items to be sold to N bidders. Each b ⊆ S denotes a bundle of
items. For any bidder n, let vn = {vnb }b⊆S denote the valuation vector of bidder n. We
assume that ∀b ̸= ∅, vnb ∈ [v, v] with v ≥ 0 and normalize vn∅ = 0. Let v = (v1, v2, . . . , vN)

denote the entire valuation profile. M ⊂ 2S is a menu of (non-empty) bundles chosen
by the auctioneer. While M is a choice variable of the auctioneer, for now we take it as
exogenously given and defer the discussion of menu choice to Section 4. For our analysis,
we assume N ≥ |M|+ 1. Let

B(M) = {X ⊂M|∀b, b′ ∈ X, b ∩ b′ = ∅}

denote the set of feasible allocations of bundles within the menu, i.e. all collections
consisting of non-overlapping bundles.

2.2 The auction format

We now define the extensive form of the Combinatorial Ascending Auction (CASA):
Let P ⊂ R+ be a finite grid of feasible bids with grid size ϵ and maxP > v.

(1) Initialization: t = 0. The leading price vector p0 = (p0b)b∈M = 0. The leading
bidder vector ϕ0 = (ϕ0

b)b∈M = 0. The active bidder set N 0 = {1, . . . , N}. Then,
move on to period t = 1 bidding stage.

(2) Bidding stage t: An active bidder n ∈ N t−1 observes (pt−1, {b|ϕt−1
b = n}) and

chooses a bid {(b, pb)} ⊂ (M× P ), subject to the constraint that1

• Leading bids are binding: if ϕt−1
b = n, then the bid must includes b and pb ≥ pt−1

b .

• Mnimum bid increment: if the bid includes b s.t. ϕt−1
b ̸= n, then pb > pt−1

b .

The auction states are updated as follows:

• Following a null bid ∅, pt = pt−1, ϕt = ϕt−1, N t = N−1 \ {n}.
1 The bidder selection rule and the observability of history is inconsequential for our analysis. For concreteness, consider

the selection rule that N is cycled in increasing order. The observability of history minimized while being sufficient for
determining a valid bid in order to maximally protect privacy.
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• Following an active bid, ϕt
b = n, ptb = pb for b included in the bid. ϕt

b′ = ϕt−1
b′ ,

ptb′ = pt−1
b′ for b′ not included in the bid. N t = N t−1.

Then, move on to period t+ 1 bidding stage.

(3) Resolution: the auction ends in period t + 1 when prices stay constant for N + 1

consecutive periods. The auctioneer chooses a feasible allocation to maximize

max
b∈B(M)

∑
b∈b

ptb.

Denote the maximizer by b∗. Each bundle b ∈ b∗ is allocated to ϕt
b, and charged a

price ptb.

In words, CASA runs parallel ascending auctions for each bundle b. Then, the items
are allocated to maximize the total price. Compared to other proposals like SAAPB
(Ausubel and Milgrom (2002)) and CCA (Ausubel et al. (2006)), CASA shares the same
open ascending feature but has a more straightforward rule of “pay-as-bid”. CASA has
the following properties:

2.3 The rank-guarantee of CASA

At any history, consider a non-leading bidder’s choice between “to bid” or “to quit”.
Then, quitting the auction leads to a best outcome of zero payoff, while continuing guar-
antees a non-negative payoff if some leading prices are still below the bidder’s valuations.
Hence, it is “obviously optimal” to bid as opposed to quit. Analogous to the notion of ob-
vious dominant strategy from Li (2017), we define a notion of obviously dominated strate-
gies to derive our solution concept. Let h = (t, (N 0, . . . ,N t−1), (p0 . . . ,pt−1), (ϕ0, . . . ,ϕt−1))

denote a history of the game and H denote the set of histories. Let In(p, b) = {h ∈ H|pt =

p, {b|ϕt−1
b = n} = b} denote bidder n’s information set given observed prices p and n’s

leading bundles b. Let In denote all information sets of n. Let sn : In → 2M×R+ denote
bidder n’s (pure behavioral) strategy and un(s,v|h) denote the deterministic payoff to
player n given value profile v, strategy profile s, conditional on the current history h and
n bidding in period t.

Definition 1. A bidding strategy sn : H → 2M×P is obviously dominated if there
exists history h and s′n that differs from sn at the history s.t.

sup
v−n,s−n,h∈In

un(s,v|h) ≤ inf
v−n,s−n,h∈In

un(s
′
n, s−n,v|h);

inf
v−n,s−n,h∈In

un(s,v|h) < sup
v−n,s−n,h∈In

un(s
′
n, s−n,v|h).
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The first inequality is identical to the definition of the obvious dominance relation in
Li (2017), i.e. the best outcome under sn is weakly worse than the worst outcome under
s′n. In addition, we require the dominated strategy to be non-equivalent in terms of the
induced outcome to the dominating strategy. The second requirement guarantees that
the set of non-obviously dominated strategies is non-empty. The earlier intuition then
translates to:

Lemma 1. If ∃ In ∈ In s.t. sn(In) = ∅ and

• ∃p′ ∈ P and b ∈ arg max
b∈B(M)

∑
b′∈b

p′b′ s.t. p′ ≥ pt and vnb > p′b > ptb,

then sn is obviously dominated.

Proof. The payoff from sn conditional on any h ∈ In is always zero. We first discuss
a special cases: |N t−1| = 1 and n is not a current leading bidder (otherwise ∅ is not a
feasible bid). Then, the current prices must be all 0 and all other bidders have quit (and
this is the unique consistent history). The auction ends with bid s′n(h) = (b, p′b), leading
to un(s

′,v|h) > 0.
Suppose |N t−1| > 1. Consider s′n(In) = (b, p′b) and any other active bidder bidding to

p′b′ when it is his turn. Then, the auction ends with prices p′, leading to un(s
′,v|h) =

vnb − p′b > 0, for all h ∈ In. Q.E.D.

Note that Lemma 1 suggests that our intuition is incomplete as we can not fully
rule out strategies that quit when value is above some leading prices. To rule out such
strategies, it further requires the existence of some scenario under which bidder n may
be pivotal: a strictly profitable bid of n may ever be selected in the end. Let Sn

NOD(P )

denote the set of non-obviously dominated strategies of n given price grid P . Let R(s,v)

denote the revenue to seller given value profile v and strategy profile s. Define

RCASA(v) := lim
ϵ→0

inf
sn∈Sn

NOD(P )
R(s,v).

RCASA(v) is the worst-case ex-post revenue from CASA under non-obviously dominated
strategies in the limit where grid P becomes dense.

Given the valuation profile v and menuM, the kth-guarantee is defined as the maximal
revenue from feasible allocations within M, taking the kth-highest valuations for each
bundle as the price.

Definition 2. The kth-guarantee given v and M is

Rk
M(v) := max

b∈B(M)

∑
b∈b

v
(k)
b ,

where v
(k)
b denotes the kth-highest value of bundle b.
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The key observation is that RCASA(v) achieves the kth-guarantee.

Theorem 1. RCASA(v) ≥ Rk
M(v) for k = |M|+ 1.

Proof. We claim that ∀P with size ϵ,

max
b∈B(M)

∑
b∈b

ptb ≥ max
b∈B(M)

∑
b∈b

(v
(k)
b − ϵ).

Suppose for the purpose of contradiction that the statement is not true. Then, there
exists strategy profile s, value profile v and δ > 0 s.t. let (t,pt,ϕt) be the outcome,

max
b∈B(M)

∑
b∈b

ptb < max
b∈B(M)

∑
b∈b

(v
(k)
b − ϵ− δ).

Evidently, ∃b s.t. ptb < v
(k)
b − ϵ− δ. Raise each ptb to (the closest price below) v(k)b − δ until

we find the first pivotal b, i.e. maxb∈B(M)

∑
b∈b p

t
b is strictly improved by raising ptb to

v
(k)
b − δ. Since k = |M|+1, there exists a player n that quits the auction before period t

and vnb ≥ v
(k)
b . Let h be the (on-path) history at which n quits (note that at this history,

n must not be a leading bidder and pb ≤ ptb ≤ vnb − δ − ϵ). Let h ∈ In. Then, sn(In) = ∅.
Let p′ be the raised prices, then p′ satisfies the condition in Lemma 1. Therefore, sn is
obviously dominated. Q.E.D.

As we have pointed out following Lemma 1, elimination of obviously dominated strate-
gies do not guarantee the ex-post prices to be above the kth-highest values. To establish
Theorem 1, we prove in addition that the behaviors of non-pivotal bidders are incon-
sequential. With Theorem 1, we say that CASA is a rank-guaranteed auction format
(under non-obviously dominated strategies). When we say another auction format is
rank-guaranteed, the solution concept should also be specified. For instance, the SPA
is second-guaranteed under dominant strategy equilibrium. The third-priced auction is
third-guaranteed under undominated strategies.2

2.4 Discussions

Strategic simplicity: The two key features of CASA, the ascending auction format
and the non-exclusivity rule made it strategically simple to decide “how to bid”—bid
up as long as there is remaining surplus. Both features are necessary. The ascending
format makes the “prices” transparent so that there is no uncertainty about prices. The
non-exclusive bidding rule makes the allocation transparent.

However, the decision of “what to bid” remains strategically hard for the bidders.
While the bidder can fully avoid the “exposure problem” by bidding only on the bundles

2 Observe that in the third-priced auction, bidding below value is dominated by bidding the value.
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he wants, he might strategically chooses to expose himself so that to manipulate the
prices of the complementary bundles.

Robustness to collusion / irrationality: Since the argument of Theorem 1 solely
relies on the existence of one strategic bidder with a value vnb above v

(k)
b who quits the

auction. The analysis extends to the case with non-strategic bidders easily. Firstly, when
the number of non-strategic bidders is bounded, then Theorem 1 still holds when k is
relaxed by the number of non-strategic bidders.

Proposition 1. Suppose there are j non-strategic bidders, then RCASA(v) ≥ Rk
M(v) for

k = |M|+ 1 + j.

Proof. Observe that in the proof of Theorem 1, since k = |M| + 1 + j, there exists at
least one strategic player n that quits the auction before period t and vnb ≥ v

(k)
b . The rest

of the proof follows. Q.E.D.

Secondly, when the bidders form coalitions and they strategically maximize group
payoffs3, then Theorem 1 still holds when k is scaled by the coalition sizes.

Proposition 2. Suppose bidders are partitioned into strategic coalitions {ci}i∈I , where
the index is chosen such that |ci| decreases in i. Then, RCASA(v) ≥ Rk

M(v) for k =∑
i≤|M| |ci|+ 1.

Proof. Observe that in the proof of Theorem 1, since k =
∑

i≤|M| |ci|+1, there exists at
least one coalition of players c that all quit the auction before period t and maxn∈c{vnb } ≥
v
(k)
b . Let h be the (on-path) history at which the last member n in the coalition quits

(note that at this history, n must not be a leading bidder and pb ≤ ptb ≤ maxn{vnb }−δ−ϵ).
Let h ∈ In. Then, sn(In) = ∅. Obviously, quitting gives the entire group 0 payoff while
bidding p′b guarantees a non-negative payoff. Suppose all other bidders bid to p′b when it
is their turn, the auction ends with p′ and the group obtains a strictly positive payoff.
Therefore, sn is obviously dominated for coalition c. Q.E.D.

The intuition behind the two extensions is exactly the strategic simplicity of “how
to bid”. The price of each bundle must be higher than the value of any losing strategic
bidder or any losing coalition group as otherwise they will outbid the price. Of course,
Proposition 2 has no bite when k is large compared to N ; hence, it should be interpreted as
the strategic robustness of CASA only in relatively thick markets. Nevertheless, CASA is
also aligned with the philosophy of anti-collusion design even in thin markets (Klemperer
(2002)), for the reason that CASA permits minimum transmission of information.4

3 Each group can freely shift allocations within the group and maximize the total payoff.
4 Anonymity prevents the reciprocity behavior documented in Cramton and Schwartz (2000). Theorem 1 holds when

each bidder can only submit bid on one bundle at a time, which prevents the strategic communication documented in Jehiel
and Moldovanu (2001b) and Grimm et al. (2003).
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Efficiency: Note that it is not obviously dominated to bid strictly above the true valu-
ation for a bundle.5 Therefore, CASA might not satisfy ex-post IR; hence kth-guaranteed
revenue does not implie kth-guaranteed surplus. Of course, CASA still satisfies ex-ante
IR (assuming bidders having correct Bayesian priors) since quitting is always an option;
hence, the ex-ante bounds we derive in this paper on the revenue of CASA also apply to
surplus.

VCG & SAAPB: The celebrated pivot VCG mechanism is known to underperform
the kth-guarantee when bidder’s preferences exhibits complementarity.6 The SAAPB
mechanism is indeed kth-guaranteed under “straightforward bidding” strategies (Theorem
1 of Ausubel and Milgrom (2002)). However, whether SAAPB is kth-guaranteed with fully
strategic bidders is yet unknown to us. Nevertheless, our result suggests that the spirit
of SAAPB, when carefully executed, leads to an appealing revenue guarantee.

3 Rank-guarantee in the worst case

Evidently, if bidders are i.i.d., then the kth-guarantee is a quite appealing approxi-
mation when N is large, as all (fixed) order statistics converge to the upper bound of
valuation support quickly.7 In this section, we show that even in an adversarial scenario
when bidders can be arbitrarily correlated and the joint distribution is chosen to minimize
the revenue, the performance of the kth-guaranteed auctions is still quite appealing.

Let G ⊂ ∆([v, v]2
S
) be an arbitrary subset of distributions of valuations for all bundles.

We interpret G as the auctioneer’s estimation for a representative bidder ’s valuation.
Then, the joint distributions among all bidders’ valuations that are considered possible
by the auctioneer are

F =
{
F ∈ ∆([v, v]N×2S)

∣∣∣ 1
N

∑
Fn ∈ G

}
,

where Fn is the marginal distribution of bidder n’s valuation. 1
N

∑
Fn is the CDF of

the valuation of a uniformly randomly selected bidder in the population. We call F an
ambiguity set. Such ambiguity set F could come from the statistical estimation of F

based on a “sanitized” dataset about valuations i.e. past bidder valuations with identity
information removed. The ambiguity set F captures the type of distributional uncertainty
introduced by Carroll (2017), while further generalizing it to capture realistic knowledge

5 Consider, for example, the case with three items a, b, c and three bidders 1, 2, 3. Bidder 1 and 2 only wants a and b
and bidder 3 only wants bundle {a, b, c}, respectively, all with valuation 1. By strategically bidding up item b even though
bidder 1 gets zero value from it, bidder 1 can reduce the bid required for him to win item a, creating an exposure problem
for 1.

6 Imagine the case M = {(a), (b), (a, b)}. v(a,b) = 1 for all bidders. va = vb = 0 for all bidders except for two, whose
value for a and b are 1. The VCG revenue is 0, while the kth-guarantee is 1 for any k ≥ 2.

7 At the rate of 1
N

.
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structures stemming from statistical inference.8

∀F ∈ ∆([v, v]N×2S), define the ex-ante efficient surplus with menu M

VM(F ) := EF

[
max

b∈B(M)
max
ι:b↔N

∑
b∈b

v
ι(b)
b

]
.

The ex-ante efficient surplus with the complete menu V2S(F ) is denoted by V ∗(F ).

Theorem 2. ∀M,

inf
F∈F

EF [R
k
M(v)] ≥ inf

F∈F
VM(F )− k|M|v

N
.

Proof. Let ® be a uniform random element of N = {1, . . . , N}.

Rk
M(v) ≥ max

b∈B(M)

∑
b∈b

v
(k)
b

≥ max
b∈B(M)

∑
b∈b

v®b −
∑
b

(v®b − v
(k)
b )+

=⇒ EF [R
k
M(v)] ≥EF

[
max

b∈B(M)

∑
b∈b

v®b

]
−
∑
b∈b

EF

[
v®b − v

(k)
b , v®b > v

(k)
b

]
≥EF

[
max

b∈B(M)

∑
b∈b

v®b

]
−
∑
b∈b

vProb(v®b > v
(k)
b )

=EF

[
max

b∈B(M)

∑
b∈b

v®b

]
− k|M|v

N
.

Then,

inf
F∈F

EF

[
Rk

M(v)
]
≥ inf

F∈F
EF

[
max

b∈B(M)

∑
b∈b

v®b

]
− k|M|v

N

≥ inf
G∈G

EG

[
max

b∈B(M)

∑
b∈b

vb

]
− k|M|v

N

≥ inf
F∈F

VM(F )− k|M|v
N

.

For the last inequality, observe that ∀G ∈ G, the joint distribution that all bidders identi-
cally distributed according to G is contained in F (in which case VM(F ) ≤ EG

[
maxb∈B(M)

∑
b∈b vb

]
).

Therefore,infF∈F VM(F ) ≤ infG∈G EG

[
maxb∈B(M)

∑
b∈b vb

]
Q.E.D.

Theorem 2 illustrates a key trade-off between menu sufficiency and approximation
8 Carroll (2017) studies a multi-item single-buyer problem, where the unquantifiable uncertainty is about the correlation

between items. In our setting, we assume the unquantifiable uncertainty is about the correlation between bidders, while
among items there might or might not be uncertainty as G is completely general.
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efficiency. M can be naively chosen to be the entire 2S to guarantee full menu sufficiency
i.e. VM(F ) = V ∗(F ). However, this leads to |M| to grow exponentially in M , causing
both complex auction process and slow convergence. Vice versa, choosing a small menu
achieves approximation efficiency but sacrifices allocation efficiency. Although such trade-
off is generally non-trivial under general combinatorial preferences, we show in the next
section that under canonical preference structures, menu sufficiency and approximation
efficiency can often be achieved simultaneously.

Tightness of the bound:

Proposition 3. ∀M,N,M, k, exists G s.t.

inf
F∈F

EF [R
k
M(v)] ≤ inf

F∈F
VM(F )−O

(
k
N

)
.

Proof. See Appendix A.1. Q.E.D.

The coefficienct k|M| in Theorem 2 consists of two parts. The first k comes from the
kth highest value approximation. The second |M| comes from the total number of |M|
bundles. In Proposition 3, we show that the dependence on k is tight.

4 Simple and sufficient menus

In this section, we explore preference structures under which there exists menus that
are sufficient—the menu leads to full allocation efficiency—and small—menus size grows
at polynomial rate as M grows.

Definition 3. Menu M is G-sufficient if:

inf
G∈G

EG

[
max

b∈B(2S)

∑
b∈b

vb

]
= inf

G∈G
EG

[
max

b∈B(M)

∑
b∈b

vb

]
.

A menu M is sufficient if the worst-case surplus from allocating to (hypothetically)
identical bidders with valuation distribution from G is the same as that under the com-
plete menu 2S. Importantly, sufficiency is defined w.r.t. the preference of a single bidder
instead of all bidders. It is much weaker than assuming that restricting to allocations
within M is without loss for ex-post efficiency.9 Nevertheless, sufficiency guarantees full
allocation efficiency:

9 Consider for instance two items and two bidders, each valuing the sum of individual items more than bundles. Then,
menu of individual items is “sufficient” per Definition 3, but not necessarily ex-post efficient when the two bidder’s values
are highly asymmetric.

12



Theorem 3. If menu M is G-sufficient:

inf
F∈F

EF

[
Rk

M(v)
]
≥ inf

F∈F
V ∗(F )− k|M|v

N
.

Proof. When M is G-sufficient,

inf
F∈F

EF

[
Rk

M(v)
]
≥ inf

G∈G
EG

[
max

b∈B(M)

∑
b∈b

vb

]
− k|M|v

N

= inf
G∈G

EG

[
max

b∈B(2S)

∑
b∈b

vb

]
− k|M|v

N

≥ inf
F∈F

V ∗(F )− k|M|v
N

.

Q.E.D.

A simple sufficient condition for G-sufficiency is that maxb∈B(2S)
∑

b∈b vb = maxb∈B(M)

∑
b∈b vb

holds ex-post, which allows us to convert preference assumptions into sufficiency. To sim-
plify notation, let Supp(G) := ∪G∈GSupp(G).

Weak substitutability and itemized ascending auction

Definition 4. Bidder preference exhibits weak substitutability if ∀v ∈ Supp(G), ∀b ⊂
S, ∑

s∈b

v{s} ≥ vb.

In words, a representative bidder finds the value of any bundle lower than the total
value of all items in the bundle. Weak substitutability is a necessary condition for various
substitutability notions studied in the literature.

Proposition 4. If bidder preference exhibits weak substitutability, menu M = S is G-
sufficient and k = M + 1.

WhenM = S, the CASA reduces to a simple itemized ascending auction, where each
item is auctioned individually and exclusively. Weak substitutability is one of the most
widely used preference assumptions in the literature as it captures a natural diminishing
return to scale. Our analysis shows that under such preference structure, CASA can
exhibit extreme simplicity while achieving both allocation and approximation efficiency.
Intriguingly, under weak substitutability, the canonical Vickery auction performs as well
as CASA, despite its much worse performance under more general preference structures.

Proposition 5. If bidder preference exhibits weak substitutability, the Vickery auction
with truthful bidding achieves a revenue guarantee of RM+1

S (v).
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Proof. See Appendix A.2. Q.E.D.

An even more special case of weak substitutability is the sponsored search auction,
where valuations of items are constant (and common) ratios of a one-dimensional private
type. As is proved in Edelman et al. (2007), the clock auction version of generalized second
price (GSP) auction is outcome equivalent to the Vickery auction; hence achieving the
same M + 1th-guarantee.

Weak complementarity and SPA

Definition 5. Bidder preference exhibits weak complementarity if ∀v ∈ Supp(G),
∀b ∈ B(2S), ∑

b∈b

vb ≤ vS.

In words, a representative bidder finds the value of the grand bundle higher than the
total value of any feasible collection of bundles. Weak complementarity is a necessary
condition for various complementarity notions studied in the literature.

Proposition 6. If bidder preference exhibits weak substitutability, menu M = {S} is
G-sufficient and k = 2.

WhenM = {S}, the CASA reduces to a simple ascending auction for only the grand
bundle. Evidently, in this case, the standard second-priced auction (SPA) is second-
guaranteed and outcome-equivalent to CASA.

“Partitional” complementarity A hybrid case of complementarity and substitutabil-
ity is the complementarity described by a partition K of S.

Definition 6. Let K be a partition of S. Bidder preference exhibits K-partitioned
complementarity if ∀v ∈ Supp(G),

∀b ∈ K, ∀partition κ of b,
∑
b′∈κ

v′b ≤ vb;

∀b′ ⊂ S,
∑
b∈K

vb∩b′ ≥ vb′ .

Preference exhibits K-partitioned complementarity structure means there is weak
complementarity within each b ∈ K and weak substitutability across each b ∈ K. In
this case, M = K is G-sufficient and k = |K|+ 1.

The result can be easily extended to the case with multiple possible partitions {Ki}Ii=1,
where I is bounded. In this case M = ∪i∈IKi and k ∼ Poly(M). Such partitional pref-
erence structure arises when there is clear synergy between “nearby” bundles. Think
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about land auctions, for example. There are finitely many possible partitions that are
determined by the major divisions of lands by rivers, highways, or railroads. If two dis-
tinct lands are segregated by those divisions, then there is substitutability among them.
In such cases, our theory guarantees the performance of CASA with the partitional menu.

Homogeneous goods and quantity-CASA

Definition 7. The goods are homogeneous if there exists u : N → [v, v] s.t. ∀v ∈
Supp(G), ∀b ∈ S,

vb = u(|b|).

With homogeneous goods, a representative bidder’s valuation for any bundle only
depends on the size of the bundle. Note that the dependence of u on |b| is arbitrary.
We do not even require monotonicity. In this case, we redefine the notion of feasible
allocations to B : (M) = {X ⊂ M|

∑
b∈X |b| ≤ M}, i.e. an allocation is feasible as long

as the total number of items is below M .

Proposition 7. If goods are homogeneous, menu M = ∪l∈{1,...,M}{b1l , . . . , b
⌊M

l
⌋

l }, where
bjl ’s are distinct bundles of size l is G-sufficient and k ≤ M2+M

2
.

In this case, CASA simply auctions ⌊M
l
⌋ copies of each quantity level l ≤ M via

individual ascending auctions. Like the discussion in partitional complementarity, there
may finitely many types of homogeneous goods. As long as the number of types I is
bounded, the menu consists of all combinations of ⌊M

l
⌋ copies of each type is sufficient

and of size Poly(M). Such preference structure is typical in examples like the spectrum
auctions. Different frequencies are almost physically homogeneous, except that “middle”
frequencies might be of different value from “boundary” frequencies.

5 Concluding remarks

In this paper, we design an auction format (CASA) that guarantees an approxi-
mately optimal ex-post revenue. In addition, we show that CASA is strategically simple
for bidders and robust to distributional and strategic uncertainties under certain approx-
imations. In practice, these approximation gaps may become non-negligible, rendering
the deployment of CASA challenging.

• Menu size: the revenue performance of CASA as well as its strategic robustness
crucially hinges on the rank k (menu size) being small relative to the number
of bidders. In the online advertising examples we introduce, the complete menu
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is small enough that a handful of bidders may be sufficient to make CASA an
appealing design. However, other interesting auctions may suffer the large menu
problem (e.g. the land auctions) or the thin market problem (e.g. the route auctions
of rideshare apps) or both (e.g. the spectrum auctions), rendering the guarantee
underpowered.

In the latter cases, the menu sufficiency-approximation efficiency tradeoff becomes
eminent. Our theory suggests the importance of preference estimation in those set-
tings. Finding a simple sufficient menu still keeps the revenue guarantee appealing
and CASA directly applicable. Even in settings like the spectrum auction where
our theory has no bite, menu design may still be a cost-effective way to promote
competition and improve the revenue performance of existing auctions.

• Proxy bidding: Since CASA makes “how to bid” but not “what to bid” straightfor-
ward, a full proxy-bidding version of CASA is still unknown to us, making deploying
CASA in settings that require fast resolution of auctions challenging. We would like
to argue that this can be mitigated by providing simple “copilot” features thanks
to the significant progress in AI algorithms. If the bidder were to use the copilot,
he simply need to provide values for the desired bundles, dictating the decision of
“how to bid” but let the AI recommend “what to bid”. The bidding process can
even take a hybrid design where bidders may simply do full proxy bidding using
the AI provided by the platform, or train their own complete bidding algorithm,
or use a mixture of the two: fine-tune the AI at key decision nodes. The transpar-
ent nature of CASA makes “truthfulness” even easier to maintain than traditional
truthful mechanisms like the VCG.
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A Omitted Proofs

A.1 Proof of Proposition 3

Proof. Pick arbitrary b ∈ M. Let vb′ = 1b′=b · U [0, 1], i.e. b is the only valuable bundle
and its value is uniformly distributed on [0, 1]. Let G ∼ v and G = {G}. Then, ∀F ∈ F,
VM(F ) ≥ 0.5. Define F ∗ as follows: uniformly randomly pick k − 1 bidders and their
values for b are identical and distributed according to U [1 − k−1

N
, 1]. For the remaining

bidders, their values for b are identical and distributed according to U [0, 1 − k−1
N

]. It is
easy to verify that F ∗ ∈ F and

EF ∗ [Rk
M(v)] = EU [0,1− k−1

N
][x] =

1

2
− 1

2

k − 1

N
≤ inf

F∈F
VM(F )−O

(
k
N

)
.

Q.E.D.
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A.2 Proof of Proposition 5

Proof. We slightly abuse notation and represent an allocation by a vector of sets b =

(b1, . . . , bN), where bn∩bn′ = ∅. bn is the bundle allocated to bidder n. Let BN denote the
set of all feasible allocations with N bidders. Let b∗(v) denote the efficient allocation.

We establish a lower bound of the revenue-guarantee of the VCG mechanism by
constructing, for each n, an allocation bn ∈ BN−1 of the objects to the bidders other than
bidder n. Clearly, for any such profile bn,

RV CG(v) =
N∑

n=1

(
sup

b∈BN−1

∑
n′ ̸=n

vn
′

bn′ −
∑
n′ ̸=n

vn
′

b∗
n′ (v)

)

≥
N∑

n=1

(∑
n′ ̸=n

vn
′

bn
n′
−
∑
n′ ̸=n

vn
′

b∗
n′ (v)

)
(1)

For each n, we construct allocation bn ∈ BN−1 via the following algorithm:

Algorithm. Bundle bnn′ = ∅ for all n′. Set O = b∗n(v).

(1). For each n′ ̸= n:

If b∗n′(v) ̸= ∅, set bnn′ = b∗n′(v).

Let N̄ = {n′ : bnn′ = ∅, n′ ̸= n}.

(2). If O ̸= ∅, pick o ∈ O.

Set bnn′ = {o} for some n′ ∈ argmaxn′′∈N̄ vj′′({o}).

Update O ← O \ {o} and N̄ ← N̄ \ {n′}.

(3). Repeat (2) until O = ∅.

(4). Return allocation bn = (bn1 , b
n
2 , . . . , b

n
n−1, b

n
n+1, . . . , b

n
N).

In words, if an object is allocated to a bidder other than bidder n under b∗(v), the
object is still allocated to that bidder. We then iteratively pick an object o that is
allocated to bidder n under b∗(v), and allocate the object to the bidder n′ whose value
for the object vn

′

{o} is the highest among all the bidders who are not allocated any object
yet. For each o ∈ b∗n, define no to be the index n′ such that bnn′ = {o}.

It follows from Equation (1) that

RV CG(v) ≥
N∑

n=1

(∑
n′ ̸=n

vn
′

bn
n′
−
∑
n′ ̸=i

vn
′

b∗
n′ (v)

)

=
N∑

n=1

∑
o∈b∗n

vno

{o}
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≥
M∑
o=1

v
(M+1)
{o} = RM+1

M (v),

The second inequality follows from the construction of bi: when an object o ∈ b∗i is being
allocated, it is allocated to the bidder n′ whose value for the object vn

′

{o} is the highest
among all the bidders who are not allocated any object yet. Since each iteration assigns
at least one good to one bidder and there are at most M goods, we have v

n′
o

{o} must be at
least the (M + 1)-th highest value among all vn{o}. Q.E.D.
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