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Abstract

An agent acquires information dynamically until her belief about a binary
state reaches an upper or lower threshold. She can choose any signal process
subject to a constraint on the rate of entropy reduction. Strategies are ordered
by “time risk”—the dispersion of the distribution of threshold-hitting times.
We construct a strategy maximizing time risk (Greedy Exploitation) and one
minimizing it (Pure Accumulation). Under either strategy, beliefs follow a
compensated Poisson process. In the former, beliefs jump to the threshold that
is closer in Bregman divergence. In the latter, beliefs jump to the point with
the same entropy as the current belief.
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1 Introduction

In this paper, we study information acquisition by a Bayesian agent about an unknown

binary state ω ∈ {0, 1}. The agent wants to be reasonably certain about ω and is

satisfied once her posterior belief that ω is 1 reaches either an upper or a lower

threshold. She earns a unit payoff the first time that this happens. She has great

flexibility in how she can learn but has a resource constraint that limits her rate

of learning. That is, she can choose any cádlág martingale posterior belief process

subject to a constraint on the rate of entropy reduction.1

Our simple model captures three important features of many economic settings:

flexible learning, limited resources, and threshold decision rules. These features often

appear in the contexts of research and development, clinical trials, digital marketing,

user-experience testing, and others. In settings like these, a researcher often has a

fixed budget of resources that she can spend on a variety of different experiments

with the goal of testing a hypothesis at some minimal level of statistical power.

Our main contribution is to show how, in such settings, the agent’s optimal learn-

ing strategy depends on her time-risk preferences. That is, we allow for a rich set

of preferences over threshold-hitting times beyond the standard case of exponential

discounting. We say that the agent is time-risk loving (averse) whenever her util-

ity over threshold-hitting times is concave (convex).2 We derive a learning strategy

that is optimal whenever the agent is time-risk loving and a strategy that is optimal

whenever she is time-risk averse. Critically, the optimality of these strategies does not

depend on the shape of the agent’s utility function beyond its convexity or concavity.

In reality, there are many reasons why individuals may have time preferences that

differ from the predominantly-studied case of exponential discounting. For example,

this may be due to external factors such as exogenous decision deadlines, explicit

discounting, and flow costs associated with foregone opportunities while learning. It

may also be due to internal factors such as present-bias resulting from hyperbolic dis-

counting. We provide a simple framework that allows for these factors when studying

optimal learning and derive strategies that are uniformly optimal up to the convexity

1Our measure of entropy is a generalization of Shannon’s entropy. Let H : [0, 1] → R be an
arbitrary strictly convex C2 function. Given H, we define the entropy at belief µ ∈ [0, 1] to be
−H(µ). Shannon’s entropy is the case when H = µlnµ+ (1− µ)ln(1− µ).

2In this paper, we model the agent as an expected-utility maximizer. However, it is easy to see
that all of our results will go through as long as the agent has a preference relation over stopping
times that is monotonic in the mean-preserving spread order.
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or concavity of the utility function over threshold-hitting times.

We now briefly describe the two learning strategies and provide intuition for them.

When the agent is time-risk loving, a Greedy Exploitation strategy is optimal. Under

this strategy, the agent myopically maximizes the instantaneous rate that her beliefs

jump to a threshold. She acquires a rare but decisive signal that, upon arrival, induces

her belief to jump to the threshold that is closest in the Bregman divergence.3 By

targeting the closer threshold, she can jump at a faster rate without violating her

constraint on the rate of entropy reduction. In the absence of a signal arrival, her belief

experiences compensating drift in the direction of the farther threshold. Eventually

her belief reaches a point that is equidistant in the Bregman divergence to the two

thresholds. At this point, she acquires signals such that her beliefs may jump to

either threshold but at rates set so that there is no net compensating drift so that

her belief is stationary in the absence of a jump.

Intuitively, Greedy Exploitation is optimal because it produces a very risky dis-

tribution of threshold hitting times. Because the strategy is greedy, it yields a high

probability of an early hitting time. However, in the absence of a jump, since be-

liefs drift towards the farther threshold, the jump rate decreases so that the expected

amount of time remaining until a threshold is reached increases. In this sense, the

agent makes no “progress” in the absence of a jump. Thus there is a high probability

of late threshold hitting times as well. We in fact show, that among all strategies

that exhaust the agent’s resources (in that the constraint on the rate of entropy re-

duction is binding at all points in time), Greedy Exploitation yields a distribution of

hitting times that is maximal in the mean-preserving spread order. In this sense, it

maximizes time risk.

When the agent is time-risk averse, she instead seeks to minimize time risk. In this

case, an optimal strategy is Pure Accumulation. Under this strategy, her beliefs reach

a threshold at a deterministic time. Her beliefs follow a compensated Poisson process

that jumps in the direction of the threshold that is farther away but to an interior

belief that has the same entropy as her current belief. In the absence of a jump, her

belief experiences compensating drift towards the closer threshold. Pure accumulation

is a continuous-time analog of the “suspense-maximal” policy in Ely et al. (2015).4

3Given the entropy function H (see footnote 1), the Bregman divergence between any two beliefs
µ and µ′ is dH(µ′, µ) = H(µ′)−H(µ)−H ′(µ)(µ′ − µ).

4However, the reason why Pure Accumulation is optimal in our paper is completely different from
that of Ely et al. (2015). In Ely et al. (2015), the objective is to maximize aggregate conditional
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The strategy is, in effect, the “opposite” of Greedy Exploitation. Because jumps

are always towards beliefs with the same entropy, in the event of a jump, there is no

progress: a jump does not reduce the expected amount of time until a threshold is hit.

Instead, all progress is made through drift which is why the threshold hitting time is

deterministic. Thus, Pure Accumulation entails no time risk. It therefore produces

a distribution of hitting times that is minimal in the mean-preserving spread order

among all strategies that exhaust the agent’s resources (in that the constraint on the

rate of entropy reduction is binding at all points in time).

Our analysis of optimal learning through the lens of time-risk preferences has im-

plications for both information acquisition in practice and economic modeling. When

it is possible to acquire information flexibly, an agent who is time-risk loving should

use Greedy Exploitation, whereas an agent who is time-risk averse should opt for

Pure Accumulation. Moreover, learning via Brownian signals is generally subopti-

mal. When writing models where agents acquire information with parameterized

signal structures, economists should be mindful of whether these signal structures are

consistent with the time-risk preferences of the agents they seek to model.

2 Related Literature

Our paper contributes to a large literature on information acquisition. As in Wald

(1947) and Arrow et al. (1949) we study a sequential sampling problem but allow

the agent to flexibly design the signal process as in Zhong (2022), Hébert & Wood-

ford (2017), Hébert & Woodford (2023), Steiner et al. (2017), and Georgiadis-Harris

(2023). Whereas most of these papers restrict attention the standard case of expo-

nential discounting or a linear delay cost, we allow for more general time preferences.

For example, Zhong (2022) assumes exponential discounting which implies time-risk

loving preferences whereas Hébert & Woodford (2017) and Hébert & Woodford (2023)

assume a linear delay cost which implies time-risk neutral preferences. Our results

suggest that the assumed time-risk preferences dictate the qualitative features of the

optimal strategies identified in these papers.5 In contrast with most of the papers

variance holding fixed the stopping time.
5Hébert &Woodford (2023) allows both discounting and linear delay cost. However, they consider

the time-risk neutral limit for the majority of their analysis. Their main objective is to study how
different costs/constraints of information dictate the optimal learning pattern, which is orthogonal
to the objective of this paper. Zhong (2022) assumes a belief-dependent payoff function that does
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above as well as our own paper, Georgiadis-Harris (2023) studies the case where the

decision maker faces an exogenous random decision time and finds that a strategy

qualitatively similar to Pure Accumulation is optimal. The Pure Accumulation strat-

egy is also closely related to the suspense-maximal strategy in Ely et al. (2015).

In our analysis, the key summary statistic that determines the payoff from a strat-

egy is the distribution of the time that the agent’s belief first reaches a threshold.

This statistic defines a time lottery, which is an object studied in an emerging litera-

ture on time-risk preferences. Chesson & Viscusi (2003) and Chen (2013) show that

the expected discounted utility framework implies preferences that are risk seeking

over time lotteries (RSTL). DeJarnette et al. (2020) show that within a broad class

of models RSTL can not be violated if there is stochastic impatience. However, ex-

perimental evidence suggests that subjects are often risk averse over time lotteries

(RATL) (Chesson & Viscusi (2003); Onay & Öncüler (2007)). Our model accom-

modates both RSTL and RATL and shows that optimal information acquisition can

differ dramatically under different time-risk preferences.

The optimal learning strategies that we identify are qualitatively similar to learn-

ing strategies that have been assumed in reduced form by many papers in the liter-

ature. For example, Che & Mierendorff (2019), Mayskaya (2019), and Nikandrova &

Pancs (2018) adopt a framework that restricts attention to Poisson signal processes in

order to study optimal stopping with endogenous information. Poisson signals are also

often assumed in the literature on strategic experimentation (see a survey by Hörner

& Skrzypacz (2017)). We show that Poisson learning has an optimization foundation

under time-risk loving preferences. The Pure Accumulation strategy is also related to

classic models on the timing of innovation introduced by Dasgupta & Stiglitz (1980)

and Lee & Wilde (1980) (see a survey by Reinganum (1989)) which involve a de-

terministic time of innovation. The models in these papers assume a reduced-form

learning process and are non-Bayesian. However, we show that the learning strate-

gies in these papers can emerge endogenously in a Bayesian information acquisition

framework when agents have time risk-averse preferences.

Our model also allows for Gaussian learning strategies. Gaussian signal processes

are often assumed in reduced-form learning models (see for example Moscarini &

Smith (2001); Ke & Villas-Boas (2019); Liang et al. (2019); Morris & Strack (2019)).

not have a threshold structure. Nevertheless, the optimal learning strategy is similar to Greedy
Exploitation.
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Also, drift-diffusion models (DDM) of binary choice problems appear in Ratcliff &

Rouder (1998) and Fudenberg et al. (2018). However, our results imply that Gaussian

learning can not be justified by optimality except in the knife-edge case when agents

have time-risk neutral preferences provided information can be acquired flexibly.

Our result that a greedy strategy is optimal for a time-risk loving agent is also the

main result in Liang et al. (2019). However, the mechanisms in the two papers are

very different. Liang et al. (2019)’s result crucially depends on the linear-Gaussian

setup with exogenously given Gaussian information sources and holds for any time

preferences. Our result allows for a flexible and endogenous choice of information

sources, but crucially depends on time preferences.

We model limits on the agent’s learning resources via a constraint on the rate of

entropy reduction. That is, the rate of resource depletion is determined by a uni-

formly posterior separable (UPS) function. The rational inattention literature also

typically models information costs or constraints using a UPS function (Sims (2003);

Matějka & McKay (2014); Steiner et al. (2017); Caplin et al. (2017)). Microfounda-

tions for the UPS formulation can be found in Frankel & Kamenica (2019); Caplin

et al. (2017); Zhong & Bloedel (2021); Morris & Strack (2019). In our paper, the UPS

information constraint ensures that the expected threshold hitting time is equalized

for all exhaustive strategies, which allows us to isolate the role of time risk in infor-

mation acquisition. By Theorem 3 in Zhong (2022), a UPS information constraint is

both necessary and sufficient for the expected learning time to be equalized for all

exhaustive strategies.

3 Model

This section presents a simple model of an agent who wants to learn over time about

an unknown state. The unknown state ω takes values in {0, 1}. At t = 0, the agent

believes that ω is 1 with probability µ ∈ (0, 1). She receives a unit payoff when her

posterior belief µt that ω is 1 reaches either an upper threshold µ ∈ (µ, 1) or a lower

threshold µ ∈ (0, µ). However, she is impatient and her utility is a decreasing function

ρ : R+ → R of the threshold-hitting time. When ρ is convex, we say that the agent

is time-risk loving. When ρ is concave we say that she is time-risk averse.

The agent has great flexibility in how she can learn about ω but has limited

resources and cannot learn infinitely fast. Let M denote the set of processes µ =
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{µt; t ≥ 0} that satisfy a stochastic differential equation (allowing for jumps) of the

form

dµt =
N∑
i=1

(νi(t, µt)− µt)
[
dJ i

t (λ(t, µt))− λi(t, µt) dt
]
+

M∑
j=1

σj(t, µt) dZ
j
t , µ0 = µ

for some positive integers N and M and functions {νi}Ni=1, {λi}Ni=1, and {σj}Mi=1.

Above, each Zj
t is a standard Brownian Motion and each J i

t is a Poisson point process

that ticks at rate λi(t, µi
t). If J

i
t ticks at time t, the belief µt jumps to the point νi(t, µt).

The number of distinct points that the belief can jump to at time t is the integer N

and the number of distinct Brownian Motions is the integer M .

We assume that the agent can directly choose any belief process in M such that6

E
[
d

dt
H(µt)

∣∣∣Ft

]
≤ I (1)

where {Ft} is the natural filtration of µ, H is a C2 convex function defined on [0, 1],

and I ≥ 0 is a constant. −H maps the agent’s belief to its associated entropy.

Thus, equation (1) is a constraint on the rate of entropy reduction. A special case

is when −H is Shannon’s entropy so that (1) amounts to a constraint on the well-

known mutual information rate. Without loss of generality, we normalize H so that

H(µ) = H(µ) = 0 and set I = 1.7 Thus, it follows from the optional-stopping

theorem that provided (1) is binding at all times, the expected time remaining until

a threshold is reached is simply the current entropy:

−H(µt) = −E [H(µτ )− τ |Ft] = E [τ |Ft] .

To state the agent’s learning problem, let τµ = inf{t|µt ∈ [0, µ]∪ [µ, 1]} be the first

time that her beliefs reach a threshold. Since τµ may be ∞ for some belief processes,

6Our restriction to jump-diffusion belief processes is without loss of generality within the larger
class of cádlág processes such that (1) is well defined. This follows from Theorem 1 in Georgiadis-
Harris (2023).

7Normalizing H(µ) and H(µ) to 0 is without loss because we can always redefine H(µ) to be

H(µ)−
H(µ)−H(µ)

µ− µ
(µ− µ).

All the same belief processes satisfy (1) after this redefinition because beliefs are martingales. Nor-
malizing I to 1 is without loss since we can always scale H by 1/I.
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we set ρ(∞) = −∞. She solves

sup
µ∈M

E[ρ(τµ)] (2)

such that (1) holds.

Our simple model makes several assumptions in order to isolate the connection

between optimal learning and time-risk preferences which is the main focus of our

paper. For example, we assume that the agent experiences no costs from learning at

faster speeds and that she earns a common payoff regardless of the threshold that she

ultimately hits. Though these assumptions are restrictive, we believe that our model

aligns well with a number of economic applications. One application, for example,

is the case of a judge who wants to acquire enough evidence to decide whether to

convict a suspect. The judge can only come to a decision if she is reasonably certain

about the innocence or guilt of the suspect. She wants to make a decision sooner

rather than later but is otherwise indifferent. She can flexibily request evidence to

inform her decision. Another example is a platform that wants to learn whether a

user is male or female in order to tailor its advertisements. The platform wants to

be reasonably certain before it decides which ad to serve. Suppose that when it does

serve an ad, it earns in expectation the same ad revenue regardless of which of the two

thresholds is reached. The platform can flexibly choose how much and what kinds of

users’ activities to track.

4 Optimal Learning and Time-Risk Preferences

In this section, we present our main results: a strategy that is optimal whenever

the agent is time-risk loving and a strategy that is optimal whenever she is time-

risk averse. All proofs can be found in the Appendix. These results illustrate the

connection between optimal learning and time-risk preferences.

4.1 Time-Risk Loving

We first consider the case when the agent is time-risk loving. A formal statement of

her optimal learning strategy is given below in Definition 1 but we begin by describing

it informally here.

An optimal strategy for the agent is a Greedy Exploitation illustrated graphically

below.
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Notes. The dark red curve represents one possible belief path while the light red curves represent
other possible belief paths.

Let

dH(µ̃, µ̂) = H(µ̃)−H(µ̂)−H ′(µ̂)(µ̃− µ̂)

denote the Bregman divergence between any two beliefs µ̂ and µ̃ under the functionH.

In the figure, µ∗ represents the belief that is equidistant in the Bregman divergence to

the two thresholds: dH(µ, µ
∗) = dH(µ, µ

∗). Initially, the agent’s beliefs either jump to

the threshold that is closer in the Bregman divergence (in this case µ) or experiences

compensating drift towards the other threshold. By jumping to the closer threshold,

she greedily maximizes the “chance” that her beliefs reach a threshold in the “next

instant.” This is because the agent’s beliefs can jump at a faster rate when she targets

the closer threshold without violating her resource constraint (1). After some time,

in the absence of a jump, her beliefs eventually drift to µ∗. At this point, her beliefs

may jump to either threshold. The jump rates to the respective thresholds are such

that there is no net compensating drift and so, in the absence of a jump, her beliefs

remain stationary.

Definition 1. The Greedy Exploitation strategy µGE is defined as follows. Let µ∗ ∈
(0, 1) be the unique belief such that dH(µ, µ

∗) = dH(µ, µ
∗),

• While µGE
t > µ∗, her beliefs evolve according to

dµGE
t = (µ− µGE

t )
[
dJ1

t (λt)− λt dt
]

where λt = I/dH(µ, µ
GE
t ).
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• While µGE
t = µ∗, her beliefs evolve according to

dµGE
t = (µ− µGE

t ) dJ2
t

(
µGE
t − µ

µ− µ
λ∗

)
+ (µ− µGE

t ) dJ3
t

(
µ− µGE

t

µ− µ
λ∗
)

where λ∗ = 1/dH(µ, µ
∗).

• While µGE
t < µ∗, her beliefs evolve according to

dµGE
t = (µ− µGE

t )
[
dJ1

t (λt)− λt dt
]

where λt = 1/dH(µ, µ
GE
t ).

Above J1
t , J

2
t and J3

t are Poisson point processes with jump rates indicated in paren-

theses.

Theorem 1. If the agent is time-risk loving, then Greedy Exploitation is optimal.

Proof. See Appendix A.

To prove the theorem, we need only prove that Greedy Exploitation is optimal for

the special cases when the utility function is of the form ρT = max{T − t, 0} for each

T > 0. By the results in Müller (1996), this suffices to prove optimality for all convex

ρ. Our proof strategy is to write down the Hamilton-Jacobi Bellman (HJB) equation

for the agent’s problem and then check directly that the value function under the

conjectured strategy satisfies the HJB equation. We can compute the value function

analytically, since in the absence of a jump, the belief path is characterized by a

separable differential equation. Given the belief path, we immediately have the jump

points and jump rates.

Since Greedy Exploitation is uniformly optimal for all convex discount functions,

it induces the riskiest distribution of threshold hitting times among all strategies that

are exhaustive in that (1) is satisfied at all points in time. To make this precise, we

first state the following definition.

Definition 2. TEX =
{
τµ
∣∣µ ∈ M such that (1) binds at all t

}
.

The Greedy Exploitation strategy produces a threshold-hitting time that is max-

imal in the mean-preserving spread order among all threshold-hitting times in this

set.
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Proposition 1. It holds that τµGE ⪰mps τ for each τ ∈ TEX .

This result hinges on our assumption that the constraint on learning is of the form

in (1). Because of this assumption, all exhaustive strategies have the same expected

threshold hitting time which is equal to the initial entropy −H(µ).

4.2 Time-Risk Averse

When the agent is time-risk averse, her optimal learning strategy is Pure Accumula-

tion, illustrated graphically below.

μ

μ

μ*
μ

Time

B
el
ie
f

Notes. The dark red curve represents one possible belief path. The vertical segments represent
jumps. The light red curves represent other possible belief paths.

The Pure Accumulation strategy is closely related to the suspense-maximal strat-

egy from Ely et al. (2015). Under this strategy, the agent’s belief either jumps in the

direction of the farther threshold or experiences compensating drift. When her belief

jumps, it jumps to a point with the same entropy as her current belief so that all

progress is made through drift.

Definition 3. The Pure Accumulation strategy is defined as follows. Let µH : [0, 1]\
{µ∗} → [0, 1] denote the function that maps a belief µ̂ to the unique belief µH(µ̂) ̸= µ̂

such that H(µH(µ̂)) = H(µ̂).

dµPA
t =

[
µH(µPA

t )− µPA
t

]
dJt(λt)− λt

[
µH(µPA

t )− µPA
t

]
dt

where Jt is a Poisson point process that ticks at rate λt = 1/dH(µ
H(µPA

t ), µPA
t ).
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Then, Pure Accumulation is optimal for the agent because it entails no time-risk:

she is guaranteed to hit a threshold at t = −H(µ). We immediately have the following

result.

Proposition 2. It holds that τ ⪰mps τµPA for each τ ∈ TEX .

5 Concluding Discussion

In this paper, we have studied the relationship between time-risk preferences and op-

timal information acquisition. We have shown that an optimal strategy for a time-risk

loving agent is Greedy Exploitation. This strategy produces the riskiest distribution

over threshold hitting times among all exhaustive strategies. On the other hand, an

optimal strategy for a time-risk averse agent is Pure Accumulation. This strategy

produces a deterministic threshold hitting time and thus entails no time risk. Both of

these strategies are uniformly optimal up to the convexity or concavity of the utility

function, provided the agent is impatient. Thus they are immune to dynamic inconsis-

tency. In practice, agents may have time preferences that differ from the well-studied

case of exponential discounting. Our analysis predicts how these agents may seek

to acquire information and provides guidance for the kinds of signal structures that

economists should use when modeling these agents.

There are two promising avenues to explore in future work. The first is to explore

how our results may extend to the case when the agent is neither time-risk loving

nor time-risk averse. For these more general preferences, what are the qualitative

features of optimal information acquisition? A second avenue to explore is to try to

embed our model of information acquisition into strategic settings where there are

multiple agents in order to study the implications of flexible information acquisition

in games.
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A Proofs for Theorem 1

In this Appendix we prove Theorem 1 which will follow from Lemmas 1-4 below.

We first define some useful notation. Let

U(µ, t) =

∫ t

0

λse
−

∫ s
0 λz dz ds

denote the probability that a jump arrives by time t under Greedy Exploitation. It is

easy to show that ∂
∂µ
U(µ, t) ≥ 0 for µ ∈ [µ∗, µ] and that ∂

∂µ
U(µ, t) ≤ 0 for µ ∈ [µ, µ∗].

Also, let

V (µ, t) =

∫ t

0

(t− s)λse
−

∫ s
0 λz dz ds

denote the payoff under Greedy Exploitation for the discount function ρt(s) = max{t−
s, 0} for s ∈ [0,∞). One can verify that ∂V (µ, t)/∂t = U(µ, t). In what follows we

often write Vt(µ) and Ut(µ) in place of V (µ, t) and U(µ, t) to ease notation.

Finally, for any two beliefs ν and µ let

dVt(ν, µ) = Vt(ν)− Vt(µ)− V ′
t (µ)(ν − µ).

If Vt was convex then dVt would be a Bregman-divergence.

The following Lemma 1 formulates the Hamilton-Jacobi Bellman equation for the

agent’s problem (2) and states that V is the true value function if it satisfies this

equation.
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Lemma 1. Given T > 0, if V satisifes

max

{
t1µ∈{µ,µ} − Vt(µ),max

{
sup
ν

dVt(ν, µ)

dH(ν, µ)
,
V ′′
t (µ)

H ′′(µ)

}
− Ut(µ)

}
= 0 (3)

at each (t, µ) ∈ [µ, µ]× [0, T ] then VT (µ) is equal to (2) when ρ = ρT .

Proof. The Hamilton-Jacobi Bellman equation for the agent’s problem (2) is

max

{
− Vt(µ) + t1µ∈{µ,µ},−Ut(µ) + sup

(νi),(λi),σ

Aν,λ,σVt(µ)

}
= 0, (4)

s.t. Aν,λ,σH(µt) ≤ 1 (5)

where Aν,λ,σ is the operator defined for functions f ∈ C2(µ, µ) by

Aν,λ,σf(µ) =
∑
i

λi
[
f(νi)− f(µ)− f ′(µ)(νi − µ)

]
+

1

2

∑
j

(σj)2f ′′(µ).

Here, Aν,λ,σ is the infinitessimal generator for a compensated jump-diffusion process

with jump points (νi), jump rates (λi), and volatilities (σj). Because the operator

is additively separable it suffices to choose either a single jump point or volatility to

achieve the sup in (4). In either case, the jump rate or volatility will be set so that

the constraint (5) binds. Using these facts, it follows that if V satisfies (3) then it

must also satisfy (4).

Suppose that V satisfies (3). Consider an arbitrary admissible strategy (νi), (λi),

(σj) with first threshold-hitting time τ . By Itô’s formula for jump diffusions,

V (µτ∧T , T − τ ∧ T )− V (µ, T )

=

∫ τ∧T

0

−U(µt, T − t) +
1

2

∑
j

(σj
t )

2∂
2V (µt, T − t)

∂µ2

−
∑
i

λi
t

∂V (µt, T − t)

∂µ
(νi

t − µt) dt+
∑
j

∫ τ∧T

0

∂V (µt, T − t)

∂µ
σj
tdZt

+
∑
i

∫ τ∧T

0

[
V (νi

t , T − t)− V (µt, T − t)
]
dJ i

t (λ
i
t)

where we have used the fact that ∂V (µ, t)/∂t = U(µ, t).
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Rearranging and taking an expectation of both sides yields

V (µ, T ) =E

[
V (µτ∧T , T − τ ∧ T )

−
∫ τ∧T

0

−U(µt, T − t) +
1

2

∑
j

(σj
t )

2∂
2V (µt, T − t)

∂µ2

−
∑
i

λi
t

∂V (µt, T − t)

∂µ
(νi

t − µt) dt

+
∑
i

∫ τ∧T

0

(
V (νi

t , T − t)− V (µt, T − t)
)
dJ i

t (λ
i
t)

]

=E
[
V (µτ∧T , T − τ ∧ T )−

∫ τ∧T

0

−U(µt, T − t) +Aν,λ,σV (µt, T − s) dt

]
≥E [V (µτ∧T , T − τ ∧ T )]

≥E [T − τ ∧ T ]

=E
[
ρT (τ)

]
where the first and second inequalities follow from the fact that V satisfies (4). Thus,

no admissible strategy can achieve a higher value. Since V (µ, T ) is achieved by Greedy

Exploitation, the proof is complete.

The next three lemmas verify, step by step, that V satisfies the conditions of

Lemma 1.

Lemma 2. At each t ∈ [0,∞) the following hold:

1. If µ ≥ µ∗, then

Ut(µ) =
dVt(µ, µ)

dH(µ, µ)
.

2. If µ ≤ µ∗, then

Ut(µ) =
dVt(µ, µ)

dH(µ, µ)
.

Proof. Suppose that µs ∈ (µ∗, µ]. While in this region, in the absence of a jump,

beliefs evolve according to

µ̇s = − µ− µs

dH(µ, µs)
, s ∈ [0,∞). (6)
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Throughout the rest of this proof, we abuse notation and let µs denote the belief

conditional on no jump occuring up to and including time s. We first use (6) to

derive a couple of useful relationships. Let t∗ denote the first time that the beliefs

reach µ∗ in the absence of a jump. Then we see that for s < t∗, (6) implies

ln

(
µ− µs

µ− µ

)
=

∫ s

0

λz dz (7)

and ∫ µs

µ

dH(µ, z)

µ− z
dz = −s. (8)

From (8), we find that
dt∗

dµ
=

dH(µ, µ)

µ− µ
(9)

and
dµs

dµ
=

dH(µ, µ)

dH(µ, µs)

µ− µs

µ− µ
. (10)

Next, under the conjectured strategy

Vt(µ) =

∫ t

0

ρt(s)λse
−

∫ s
0 λz dz ds

= t−
∫ t∗∧t

0

(
µ− µ

µ− µs

)
ds−

∫ t

t∗∧t
e−λ∗(s−t∗) µ− µ

µ− µ∗
ds (11)

where the second equality follows by integrating by parts and (7).

Differentiating with respect to µ yields

V ′
t (µ) =

∫ t∗∧t

0

[
1

µ− µs

− (µ− µ)

(
1

µ− µs

)2
dµs

dµ

]
ds

+

∫ t

t∗∧t

e−λ∗(s−t∗)

µ− µ∗
ds− λ∗dH(µ, µ)

∫ t

t∗∧t

e−λ∗(s−t∗)

µ− µ∗
ds (12)

where we have used (9). Substituting in (10) yields

V ′
t (µ) =

∫ t∗∧t

0

[
1

µ− µs

− dH(µ, µ)

dH(µ, µs)

1

µ− µs

]
ds

+

∫ t

t∗∧t

e−λ∗(s−t∗)

µ− µ∗
ds− λ∗dH(µ, µ)

∫ t

t∗∧t

e−λ∗(s−t∗)

µ− µ∗
ds. (13)
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Multiplying by µ− µ yields

(µ− µ)V ′
t (µ) =

∫ t∗∧t

0

[
µ− µ

µ− µs

− dH(µ, µ)

dH(µ, µs)

µ− µ

µ− µs

]
ds

+

∫ t

t∗∧t
e−λ∗(s−t∗) µ− µ

µ− µ∗
ds− λ∗dH(µ, µ)

∫ t

t∗∧t
e−λ∗(s−t∗) µ− µ

µ− µ∗
ds.

Using equation (11), we have

(µ− µ)V ′
t (µ) + Vt(µ) = Vt(µ)−

∫ t∗∧t

0

dH(µ, µ)

dH(µ, µs)

µ− µ

µ− µs

ds

− λ∗dH(µ, µ)

∫ t

t∗∧t
e−λ∗(s−t∗) µ− µ

µ− µ∗
ds (14)

where we have used the fact that t = Vt(µ).

Therefore,

(µ− µ)V ′
t (µ) + Vt(µ)− Vt(µ)

dH(µ, µ)
= −

∫ t

0

1

dH(µ, µs)

µ− µ

µ− µs

ds

− λ∗
∫ t

t∗∧t
e−λ∗(s−t∗) µ− µ

µ− µ∗
ds

= −
∫ T

0

λse
−

∫ s
0 λz dz ds

= −Ut(µ)

where we have used (7) to obtain the second equality.

Lemma 3. At each (µ, t) ∈ (µ, µ)× [0,∞) it holds that

Ut(µ) = sup
ν

dVt(ν, µ)

dH(ν, µ)
.

Proof. We will prove the case when µ > µ∗. The proof of the case when µ ≤ µ∗ is

analogous. We have

d

dν

dVt(ν, µ)

dH(ν, µ)
=

V ′
t (ν)− V ′

t (µ)

dH(ν, µ)
− dVt(ν, µ)

dH(ν, µ)2
[H ′(ν)−H ′(µ)] .
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Suppose that ν > µ. Then the derivative is nonnegative if and only if

V ′
t (ν)− V ′

t (µ)

H ′(ν)−H ′(µ)
≥ dVt(ν, µ)

dH(ν, µ)
. (15)

Both dVt and dH respect the law of cosines so we can rewrite this condition as

dVt(µ, µ)− dVt(µ, ν)− dVt(ν, µ)

dH(µ, µ)− dH(µ, ν)− dH(ν, µ)
≥ dVt(ν, µ)

dH(ν, µ)

which rearranges to
dVt(µ, µ)− dVt(µ, ν)

dH(µ, µ)− dH(µ, ν)
≥ dVt(ν, µ)

dH(ν, µ)
. (16)

We now argue that µ achieves the global maximum in the region ν ∈ (µ, µ]. Notice

that (16) holds with equality at ν = µ. Consider any local extrema in (µ, µ] so

that(16) holds with equality. We can prove that all such local extrema are necessarily

local maxima simply by proving that the derivative of the left-hand side of (16) is

negative. This is because the derivative of the right-hand side is always 0 at a local

extremum since the right-hand side expression is the objective function.

The left-hand side is decreasing in ν since dVt(µ, ν)/dH(µ, ν) = Ut(ν) is increasing

in ν. This can be seen since

d

dν

dVt(µ, µ)− dVt(µ, ν)

dH(µ, µ)− dH(µ, ν)
=

d

dν

Ut(µ)dH(µ, µ)− Ut(ν)dH(µ, ν)

dH(µ, µ)− dH(µ, ν)

<
d

dν

Ut(µ)dH(µ, µ)− Ut(µ)dH(µ, ν)

dH(µ, µ)− dH(µ, ν)
= 0.

Therefore, since any local extrema must be maxima in this region and since µ is

a local maximum it follows dVt(ν, µ)/dH(ν, µ) must be nondecreasing on the region.

Therefore µ must be a global maximum for ν ∈ (µ, µ].

Now consider ν ∈ [µ∗, µ). In this region, (following the same steps as before)

dVt(ν, µ)/dH(ν, µ) > 0 is increasing if

dVt(µ, µ)− dVt(µ, ν)

dH(µ, µ)− dH(µ, ν)
≤ dVt(ν, µ)

dH(ν, µ)
. (17)

This is the same condition as (16) except the inequality has flipped.

As before, to determine whether a local extremum is a maximum or minimum

it suffices to check how the left-hand side changes as ν increases. In this case, the
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left-hand side is increasing. This can be seen since

d

dν

dVt(µ, µ)− dVt(µ, ν)

dH(µ, µ)− dH(µ, ν)
=

d

dν

Ut(µ)dH(µ, µ)− Ut(ν)dH(µ, ν)

dH(µ, µ)− dH(µ, ν)

>
d

dν

Ut(µ)dH(µ, µ)− Ut(µ)dH(µ, ν)

dH(µ, µ)− dH(µ, ν)
= 0

where we have used the fact that the denominator is negative in this case. Thus in

this region, any local extremum must be a local minimum.

Therefore, to complete the proof it suffices to show that

dVt(µ, µ)

dH(µ, µ)
≥ dVt(ν, µ)

dH(ν, µ)
(18)

for all ν ∈ [µ, µ∗]. Following the same steps used to derive (16), except using the

law of cosines with µ instead of µ, we derive that the derivative of the objective is

positive if and only if

dVt(µ, µ)− dVt(µ, ν)

dH(µ, µ)− dH(µ, ν)
>

dVt(ν, µ)

dH(ν, µ)
. (19)

We will prove that the left-hand side of (19) is bounded above by dVt(µ, µ)/dH(µ, µ).

Thus there can not be a point ν ∈ [µ, µ∗] that achieves the supremum for the objective

higher than dVt(µ, µ)/dH(µ, µ), since if there was, at that point, the derivative of the

objective would be negative. Thus (18) must hold.

To show this, we first observe that by the law of cosines

dVt(µ, µ) = dVt(µ, µ) + dVt(µ, µ)− (µ− µ) (V ′
t (µ)− V ′

t (µ)) , (20)

and

dH(µ, µ) = dH(µ, µ) + dH(µ, µ)− (µ− µ) (H ′(µ)−H ′(µ)) . (21)

Define f(µ) and g(µ) as

f(µ) = dVt(µ, µ)− (µ− µ) (V ′
t (µ)− V ′

t (µ)) (22)

and

g(µ) = dH(µ, µ)− (µ− µ) (H ′(µ)−H ′(µ)) . (23)

21



Since (15) binds when ν = µ, it follows that

f(µ)

g(µ)
=

dV (µ, µ)− (µ− µ) (V ′(µ)− V ′(µ))

dH(µ, µ)− (µ− µ) (H ′(µ)−H ′(µ))
=

dV (µ, µ)

dH(µ, µ)
. (24)

Also since dV (µ, µ
∗)/dH(µ, µ

∗) = dV (µ, µ
∗)/dH(µ, µ

∗),

f(µ∗)

g(µ∗)
=

dVt(µ, µ) + f(µ∗)

dH(µ, µ) + g(µ∗)
⇒ f(µ∗)

g(µ∗)
=

dVt(µ, µ)

dH(µ, µ)
. (25)

Thus,

dVt(µ, µ)− dVt(µ, ν)

dH(µ, µ)− dH(µ, ν)
=

dVt(µ, µ) + f(µ)− dVt(µ, ν)

dH(µ, µ) + g(µ)− dH(µ, ν)

=
Ut(µ

∗)dH(µ, µ) + Ut(µ)g(µ)− Ut(ν)dH(µ, ν)

dH(µ, µ) + g(µ)− dH(µ, ν)

≤
Ut(µ

∗)dH(µ, µ) + Ut(µ)g(µ)− Ut(µ
∗)dH(µ, ν)

dH(µ, µ) + g(µ)− dH(µ, ν)

≤ Ut(µ) =
dVt(µ, µ)

dH(µ, µ)
.

as desired. The first line uses (20), (21), (22), and (23). The second line uses (24)

and (25) and Lemma 2. The third line uses the fact that Ut(ν) is decreasing for

ν ∈ [µ, µ∗].

Lemma 4. At each (µ, t) ∈ (µ, µ)× [0,∞), it holds that

Ut(µ) ≥
V ′′
t (µ)

H ′′(µ)
.

Proof. When µ ∈ (µ∗, µ), U ′
t(µ) > 0. Therefore, using Lemma 2,

d

dµ

t− Vt(µ)− V ′
t (µ)(µ− µ)

H(µ)−H(µ)−H ′(µ)(µ− µ)

=
−dH(µ, µ)V

′′
t (µ)(µ− µ) + dVt(µ, µ)H

′′(µ)(µ− µ)

dH(µ, µ)2
> 0

We therefore have
V ′′
t (µ)

H ′′(µ)
<

dVt(µ, µ)

dH(µ, µ)
= Ut(µ)
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as desired. An analogous argument applies when µ ∈ (µ, µ∗). We can use continuity

to show weak inequality when µ = µ∗.

We have therefore verified that the HJB in Lemma 1 is satisfied with Greedy

Exploitation which must therefore be optimal for all discount functions of the form

ρT . By the results of Müller (1996) we immediately have optimality for all decreasing

convex ρ. Thus the proof of Theorem 1 is complete.
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